K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

Không tính thì sao mà làm được :)

a)

\(2020-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2019^2}\)

\(=3+\left(1-\dfrac{1}{3^2}\right)+\left(1-\dfrac{1}{4^2}\right)+....+\left(1-\dfrac{1}{2019^2}\right)\)

\(=3+\left(\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{2019^2-1}{2019^2}\right)\)

\(=3+\left(\dfrac{2\cdot4}{3^2}+\dfrac{3\cdot5}{4^2}+\dfrac{4\cdot6}{5^2}+\dfrac{5\cdot7}{6^2}+...+\dfrac{2018\cdot2020}{2019^2}\right)\)

\(=3+\dfrac{\left(2\cdot3\cdot4\cdot....\cdot2018\right)}{3\cdot4\cdot5\cdot6...\cdot2019}\cdot\dfrac{\left(3\cdot4\cdot5\cdot....\cdot2020\right)}{3\cdot4\cdot5\cdot6\cdot....\cdot2019}=3+\dfrac{2\cdot2020}{2019}\)

\(=\dfrac{10097}{2019}\)

3 tháng 3 2019

Có: \(\dfrac{1}{k^2}=\dfrac{1}{k.k}< \dfrac{1}{\left(k-1\right)k}\left(k\in\text{ℕ},k>0\right)\)

\(\Rightarrow A=2020-\dfrac{1}{3^2}-\dfrac{1}{4^2}-\dfrac{1}{5^2}-...-\dfrac{1}{2019^2}\)

\(A=2020-\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{2019^2}\right)\)

\(>2020-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}\right)\)

Có: \(\dfrac{1}{k-1}-\dfrac{1}{k}=\dfrac{1}{k\left(k-1\right)}\left(k\in\text{ℕ},k>0\right)\)

\(\Rightarrow A>2020-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{2018}-\dfrac{1}{2019}\right)\)

\(A>2020-\dfrac{1}{2}+\dfrac{1}{2019}\)>2,2

Có: \(B=\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{17}\)

\(B=\dfrac{1}{5}+\left(\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\right)\)\(< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{6}+...+\dfrac{1}{6}\)

\(=\dfrac{1}{5}+\dfrac{1}{6}.12=2+\dfrac{1}{5}=2,2\)

Vậy A>B.

2 tháng 4 2017

2.

\(\dfrac{a}{3}-\dfrac{2}{b}=\dfrac{1}{3}\)

\(\dfrac{a\times b-3\times2}{3\times b}\)\(=\dfrac{1}{3}\)

\(\dfrac{a\times b-6}{3\times b}=\dfrac{1}{3}\)

\(\Rightarrow3\times\left(a\times b-6\right)=1\times\left(3\times b\right)\)

\(3ab-18=3b\)

\(3ab-18-3b=0\)

\(3ab-3b=18\)

\(3b\left(a-1\right)=18\)

\(18=1.18=2.9=3.6\)

\(\Rightarrow3b\left(a-1\right)=1.18=2.9=3.6\)

còn lại bạn tự làm các trường hợp ra nhé,mk lười lắmoaoa

29 tháng 6 2021

Ta có :

B = \(\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

B = \(\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

B = \(\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+1\)

B = \(2021\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+...+\dfrac{1}{2}\right)\)  (1)

Mà A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\)   (2)

Từ (1) và (2) \(\Rightarrow\) \(\dfrac{A}{B}=\dfrac{1}{2021}\)

 

Ta có: \(B=\dfrac{1}{2020}+\dfrac{2}{2019}+\dfrac{3}{2018}+...+\dfrac{2019}{2}+\dfrac{2020}{1}\)

\(=\left(\dfrac{1}{2020}+1\right)+\left(\dfrac{2}{2019}+1\right)+\left(\dfrac{3}{2018}+1\right)+...+\left(\dfrac{2019}{2}+1\right)+1\)

\(=\dfrac{2021}{2020}+\dfrac{2021}{2019}+\dfrac{2021}{2018}+...+\dfrac{2021}{2}+\dfrac{2021}{2021}\)

Suy ra: \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}}{2021\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)}=\dfrac{1}{2021}\)

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

\(B=\left(\dfrac{2020}{2}+1\right)+\left(\dfrac{2019}{3}+1\right)+...+\left(\dfrac{1}{2021}+1\right)+1\)

\(=\dfrac{2022}{2}+\dfrac{2022}{3}+...+\dfrac{2022}{2021}+\dfrac{2022}{2022}\)

=2022(1/2+1/3+...+1/2021+1/2022)

=>B/A=2022

23 tháng 3 2017

1,

đặt A= \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\)

2A=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\)

2A-A=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))

A=1-\(\dfrac{1}{2017}\)

A=\(\dfrac{2016}{2017}\)

vậy A=\(\dfrac{2016}{2017}\)

23 tháng 3 2017

Bạn ơi hnhf như đề bài phải là tính \(^{\dfrac{a}{b}}\)chứ k thì làm sao mak tính đc phần b

\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)

\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

=>B<1

=>A>B

6 tháng 4 2017

Ta thấy A > 0 (1)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{2016^2}< \dfrac{1}{2015.2016}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2015.2016}\)

\(\Rightarrow A>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}=1-\dfrac{1}{2016}=\dfrac{2015}{2016}< 1\)(2)

Từ (1)(2) => 0 < A < 1

Vậy A không phải là số tự nhiên

14 tháng 5 2017

Giải:

Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}>0_{\left(1\right)}.\) (do A là phân số dương).

Ta lại có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}.\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2016.2016}.\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}.\)

\(< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}.\)

\(< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{2015}-\dfrac{1}{2015}\right)-\dfrac{1}{2016}.\)\(< 1+0+0+0+...+0-\dfrac{1}{2016}.\)

\(< 1-\dfrac{1}{2016}.\)

\(< \dfrac{2015}{2016}.\)

\(\Rightarrow A< 1_{\left(2\right)}.\) (do \(\dfrac{2015}{2016}< 1\)).

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\) \(\Rightarrow0< A< 1.\)

\(\Rightarrow A\) không phải là số tự nhiên.

Vậy ta thu được \(đpcm.\)

~ Học tốt!!! ~