Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta đưọc:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{27}{15}=1.8\)
Do đó: c=12,6
Gọi 3 cạnh của tam giác là a , b , c (cm)
Theo bài ra ta có :
a/2= b/4 = c/5
=> a/2 = b/4 = c/5 = a+b+c/2+4+5 =22/11 = 2
=> a = 2.2 = 4 (cm)
b = 2.4 = 8(cm)
c = 2.5 = 10(cm)
gọi \(x\) (cm); \(y\)(cm); \(z\)(cm) là các cạnh của hình tam giác. theo đề bài ta có:
\(\frac{x}{3}=\)\(\frac{y}{4}=\)\(\frac{z}{5}\)và \(x+y-z=4cm\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y-z}{3+4-5}=\frac{4}{2}=2\)
cạnh nhỏ (1): \(\frac{x}{3}=2\Rightarrow x=6\); cạnh nhỏ (2) : \(\frac{y}{4}=2\Rightarrow y=8\); cạnh lớn:\(\frac{z}{5}=2\Rightarrow z=10\)
chu vi hình tam giác là:
\(6+8+10=24cm\)
đáp số : \(24cm\)
Chu vi hinh tam giác là
12.2=24(cm)
Gọi dộ dài ba cạnh là a b c (a+b+c=24)
Mà chúng tỉ lệ với 3 4 5
Suy ra \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số băng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)=\(\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
\(\frac{a}{3}=2\) a=2.3=6
\(\frac{b}{4}=2\) b=2.4=8
\(\frac{c}{5}=2\) c=5.2=10
a=6cm
b=8cm
c=10cm
Vậy cạnh lớn nhất của tam giác là 10 cm
Hai xe ô tô đi từ A đến B. Vận tốc xe thứ nhất là 60 km/h. Vận tốc xe thứ hai là 40 km/h. Thời gian xe thứ nhất đi ít hơn xe thứ hai là 30 phút. Tính thời gian mỗi xe đi từ A đến B và chiều dài quãng đường AB
- giúp mk vs
Gọi độ dài 3 cạnh tam giác là a,b,c. (a,b,c >0)
Vì a,b,c tỉ lệ với 3,5,7
a) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a+b+c=45
Áp dụng TCDTSBN, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
Vì \(\frac{a}{3}=3\Rightarrow a=3\cdot3=9\)hay cạnh thứ nhất dài 9m
\(\frac{b}{5}=3\Rightarrow b=5\cdot3=15\)hay cạnh thứ hai dài 15m
\(\frac{c}{7}=3\Rightarrow c=3\cdot7=21\)hay cạnh thứ ba là 21m
b) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và \(a+c-b=20\)
Áp dụng TCDTSBN, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+c-b}{3+7-5}=\frac{20}{5}=4\)
Vì \(\frac{a}{3}=4\Rightarrow a=3\cdot4=12\)hay cạnh thứ nhất dài 12m
\(\frac{b}{5}=4\Rightarrow b=4\cdot5=20\)hay cạnh thứ hai dài 20m
\(\frac{c}{7}=4\Rightarrow c=4\cdot7=28\)hay cạnh thứ ba dài 28m
k mk nha
#mon
Chu vi tam giác là:
12x2=24(cm)
gọi độ dài các cạnh của tam giác lần lượt là:x;y;z(cm)
theo đề bài ta có:
x/3=y4=z/5 và x+y+z=24
áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/3=y/4=z/5=x+y+z/3+4+5=24/12=2
=>x=2x3=6
y=2x4=8
z=2x5=10
vậy độ dài các cạnh của tam giác lần lượt là:6cm;8cm;10cm
Gọi độ dài 3 cạnh của tam giác lần lượt là a, b, c (độ, \(0< a,b,c< 180^o\) )
Theo đề bài ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và \(a+c=40^o\)
Áp dụng t/c DTSBN ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+c}{3+7}=\frac{40^o}{10}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=4\Rightarrow a=12^o\\\frac{b}{5}=4\Rightarrow b=20^o\\\frac{c}{7}=4\Rightarrow c=28^o\end{cases}}\)
Vậy ...
Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c mà a,b,c tỉ lệ lần lượt với 3,5,7
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
Mà c-a=40
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)=\(\frac{c-a}{7-3}\)=\(\frac{40}{4}\)=10
=>\(\frac{a}{3}\)=10.3=30
\(\frac{b}{5}\)=10.5=50
\(\frac{c}{7}\)=10.7=70
Vậy độ dài 3 cạnh tam giác lần lượt là 30,50,70
Gọi 3 cạnh là a,b,c(cm;a>b>c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{7}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{3+5+7}=\dfrac{27}{15}=\dfrac{9}{5}\\ \Rightarrow a=\dfrac{9}{5}\cdot7=\dfrac{63}{5}\)
Vậy cạnh lớn nhất là \(\dfrac{63}{5}\left(cm\right)\)
Gọi các cạnh tam giác là a,b,c (a,b,c>0)
áp dụng t/c dtsbn ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{27}{15}=1,8\)
\(\dfrac{a}{3}=1,8\Rightarrow a=5,4\left(cm\right)\\ \dfrac{b}{5}=1,8\Rightarrow b=9\left(cm\right)\\ \dfrac{c}{7}=1,8\Rightarrow c=12,6\left(cm\right)\)
Vậy độ dài cạnh lớn nhất là 12,6cm