Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà
1) cộng hoặc nhân các số để tạo thành số tròn rồi tính
2)vận dụng công thức đã học trên lớp là ra
3)so sánh 2 số một , bên nào số lớn hơn thì lớn hơn nếu ko đc thì xem lại các bài BDNHC buổi chiều
4)nâng cao hơn 1 chút cũng có trong bài BDNHC trên trường đó chẳng qua bạn ko học thôi
Bài 4
d. 450 : [ 41 - (2x - 5) ] = 32 . 5
450 : [ 41 - (2x - 5) ] = 9 . 5
450 : [ 41 - (2x - 5) ] = 45
[ 41 - (2x - 5) ] = 450 : 45
41 - (2x - 5) = 10
(2x - 5) = 41 - 10
2x - 5 = 31
2x = 31 + 5
2x = 36
x = 36 : 2
x = 1
e. 30 : (x - 7) = 1519 : 158
30 : (x - 7) = 15
x - 7 = 30 : 15
x - 7 = 2
x = 2 + 7
x = 9
f. (2x - 3)3 = 125
2x - 3 = 5
2x = 5 + 3
2x = 8
x = 8 : 2
x = 4
tk cho cj nha
Theo mk được biết thì Shinichi và Kid là hai anh em nên mk thích cả hai
i) \(5\dfrac{8}{17}:x+\left(-\dfrac{4}{17}\right):x+3\dfrac{1}{7}:17\dfrac{1}{3}=\dfrac{4}{11}\)
\(\Rightarrow\dfrac{93}{17}:x-\dfrac{4}{17}:x+\dfrac{33}{182}=\dfrac{4}{11}\)
\(\Rightarrow\left(\dfrac{93}{17}-\dfrac{4}{17}\right):x=\dfrac{4}{11}-\dfrac{33}{182}\)
\(\Rightarrow\dfrac{89}{17}:x=\dfrac{365}{2002}\)
\(\Rightarrow x=\dfrac{89}{17}:\dfrac{365}{2002}=\dfrac{178178}{6205}\)
j) \(\dfrac{17}{2}-\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=\dfrac{17}{2}-\left(-\dfrac{7}{4}\right)=\dfrac{41}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=-\dfrac{41}{4}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x=11\Rightarrow x=\dfrac{11}{2}\\2x=-\dfrac{19}{2}\Rightarrow x=-\dfrac{19}{4}\end{matrix}\right.\)
k) \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Rightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{26}{25}-\dfrac{17}{25}=\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2\)\(=\left(-\dfrac{3}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\Rightarrow x=\dfrac{2}{5}\\x+\dfrac{1}{5}=-\dfrac{3}{5}\Rightarrow x=-\dfrac{4}{5}\end{matrix}\right.\)
l) \(-1\dfrac{5}{27}-\left(3x-\dfrac{7}{9}\right)^3=-\dfrac{24}{27}\)
\(\Rightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-32}{27}-\left(-\dfrac{24}{27}\right)=-\dfrac{8}{27}=\left(-\dfrac{2}{3}\right)^3\)
\(\Rightarrow3x-\dfrac{7}{9}=-\dfrac{2}{3}\)
\(\Rightarrow3x=-\dfrac{2}{3}+\dfrac{7}{9}=\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{1}{27}\)
j, \(\dfrac{17}{2}-\left|2x-\dfrac{3}{4}\right|=\dfrac{-7}{4}\)
\(\Rightarrow-\left|2x-\dfrac{3}{4}\right|=\dfrac{-7}{4}-\dfrac{17}{2}\)
\(\Rightarrow-\left|2x-\dfrac{3}{4}\right|=\dfrac{-41}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=\dfrac{41}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=\dfrac{-41}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{-19}{4}\end{matrix}\right.\)
k, \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Rightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow x+\dfrac{1}{5}=\pm\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=\dfrac{-3}{5}\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-4}{5}\end{matrix}\right.\)
l, \(-1\dfrac{5}{27}-\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-24}{27}\)
\(\Rightarrow-\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-19}{27}\)
\(\Rightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{19}{27}\)
\(\Rightarrow3x-\dfrac{7}{9}=\dfrac{\sqrt[3]{19}}{3}\)
\(\Rightarrow3x=\dfrac{\sqrt[3]{19}}{3}+\dfrac{7}{19}\)
\(\Rightarrow...\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{4}+\dfrac{2}{5}=\dfrac{3}{10}x-\dfrac{1}{4}x\)
\(\Rightarrow\dfrac{33}{20}=\dfrac{11}{20}x\)
\(\Rightarrow x=\dfrac{33}{20}\div\dfrac{11}{20}\)
\(\Rightarrow x=3\)
\(1\dfrac{1}{4}-x\dfrac{1}{4}=x\cdot30\%\cdot\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5}{4}-x\dfrac{1}{4}=x\cdot\dfrac{3}{10}-\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)
\(\Leftrightarrow25-5x=6x-8\)
\(\Leftrightarrow-5x-6x=-8-25\)
\(\Leftrightarrow-11x=-33\)
\(\Leftrightarrow x=3\)
Vậy x = 3