Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(x-\dfrac{1}{2}=\dfrac{7}{13}\cdot\dfrac{13}{28}\)
=>\(x-\dfrac{1}{2}=\dfrac{7}{28}=\dfrac{1}{4}\)
=>\(x=\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\)
b: \(\dfrac{x}{15}=\dfrac{-3}{11}\cdot\dfrac{77}{36}\)
=>\(\dfrac{x}{15}=\dfrac{-3}{36}\cdot\dfrac{77}{11}=7\cdot\dfrac{-1}{12}=-\dfrac{7}{12}\)
=>\(x=-\dfrac{7}{12}\cdot15=-\dfrac{105}{12}=-\dfrac{35}{4}\)
c: \(x:\dfrac{15}{11}=\dfrac{-3}{12}:8\)
=>\(x:\dfrac{15}{11}=-\dfrac{1}{4}:8=-\dfrac{1}{32}\)
=>\(x=-\dfrac{1}{32}\cdot\dfrac{15}{11}=\dfrac{-15}{352}\)
Bài 1:
a: \(\dfrac{-12}{25}\cdot\dfrac{10}{9}=\dfrac{-12}{9}\cdot\dfrac{10}{25}=\dfrac{-4}{3}\cdot\dfrac{2}{5}=\dfrac{-8}{15}\)
b: \(\dfrac{10}{21}-\dfrac{3}{8}\cdot\dfrac{4}{5}\)
\(=\dfrac{10}{21}-\dfrac{12}{40}\)
\(=\dfrac{10}{21}-\dfrac{3}{10}=\dfrac{100-63}{210}=\dfrac{37}{210}\)
c: \(\dfrac{28}{11}:\dfrac{21}{22}\cdot9=\dfrac{28}{11}\cdot\dfrac{22}{21}\cdot9\)
\(=\dfrac{28}{21}\cdot\dfrac{22}{11}\cdot9=\dfrac{4}{3}\cdot2\cdot9=\dfrac{4}{3}\cdot18=24\)
d: \(-\dfrac{10}{21}\cdot\left[\dfrac{9}{15}+\left(\dfrac{3}{5}\right)^2\right]\)
\(=\dfrac{-10}{21}\cdot\left[\dfrac{3}{5}+\dfrac{9}{25}\right]\)
\(=\dfrac{-10}{21}\cdot\dfrac{15+9}{25}\)
\(=\dfrac{-10}{25}\cdot\dfrac{24}{21}=\dfrac{-2}{5}\cdot\dfrac{8}{7}=\dfrac{-16}{35}\)
e: \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\dfrac{28-7-4}{28}\)
\(=\dfrac{-1}{6}\cdot\dfrac{17}{28}=\dfrac{-17}{168}\)
f: \(\left(\dfrac{15}{21}:\dfrac{5}{7}\right):\left(\dfrac{6}{5}:2\right)\)
\(=\left(\dfrac{5}{7}\cdot\dfrac{7}{5}\right):\left(\dfrac{6}{5\cdot2}\right)\)
\(=1:\dfrac{6}{10}=\dfrac{10}{6}=\dfrac{5}{3}\)
Bài 4:
Số thứ hai là 150x3/5=90
Số thứ ba là 90x2/3=60
Số thứ tư là 60x7/10=42
Trung bình của bốn số là:
(150+90+60+42):4=85,5
\(d,\dfrac{-25}{12}-\left(\dfrac{23}{12}+1\dfrac{1}{2}\right)=d,\left(\dfrac{-25}{12}-\dfrac{23}{12}\right)-\dfrac{3}{2}=\dfrac{-48}{12}-\dfrac{3}{2}=-4-\dfrac{3}{2}=\dfrac{-8}{2}-\dfrac{3}{2}=-\dfrac{11}{2}\\ e,\dfrac{-1}{9}.\dfrac{-3}{5}-\dfrac{5}{6}.\dfrac{3}{-5}+\dfrac{-5}{2}.\dfrac{3}{5}=\dfrac{1}{9}.\dfrac{3}{5}+\dfrac{5}{6}.\dfrac{3}{5}-\dfrac{5}{2}.\dfrac{3}{5}=\dfrac{3}{5}\left(\dfrac{1}{9}+\dfrac{5}{6}-\dfrac{5}{2}\right)=\dfrac{3}{5}.\dfrac{-14}{9}=\dfrac{-14}{15}\)
\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{100^2}>\dfrac{1}{100\cdot101}=\dfrac{1}{100}-\dfrac{1}{101}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Suy ra: \(\dfrac{9}{202}< \dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{99}{100}\)
\(a)(-3/5)*x=-1/20+1/2=9/20=>x=9/20:(-3/5)=-3/4\)
Các câu kia làm tương tự nhé, chúc em học giỏi
a: =>-3/5x=-1/20+1/2=-1/20+10/20=-9/20
=>x=3/4
b: =>-1/15x-2/15=3/5
=>-1/15x=6/15+2/15=8/15
=>x=-8
c: \(\Leftrightarrow\left(2x-1\right)\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};3;-3\right\}\)
a: \(\Leftrightarrow2n-2+3⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b \(\Leftrightarrow12n-9⋮3n+1\)
\(\Leftrightarrow12n+4-13⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{3};4;-\dfrac{14}{3}\right\}\)
c: \(\Leftrightarrow n\left(n-1\right)+1⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}+\dfrac{1}{51}-\dfrac{102}{51\cdot52}\)
\(=\dfrac{1}{2}+\dfrac{1}{51}-\dfrac{102}{51\cdot52}\)
\(=\dfrac{1}{2}+\dfrac{52-102}{51\cdot52}=\dfrac{1}{2}+\dfrac{-50}{51\cdot52}=\dfrac{319}{663}\)
a: =>2x-3-3x+1=34
=>-x-2=34
=>-x=36
hay x=-36
b: =>x+1=0 hoặc 5-5x=0
=>x=-1 hoặc x=1
c: \(\Leftrightarrow\left(2x+1\right)^3=45+19=64\)
=>2x+1=4
=>2x=3
hay x=3/2
d: \(\Leftrightarrow4x^2=16\)
=>x=2 hoặc x=-2
a) \(\left(2x-3\right)+\left(-3x+1\right)=34\)
\(2x-3-3x+1=34\)
\(-x=36\)
\(x=-36\)
b) \(\left(x+1\right)\left(5-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
c) \(\left(2x+1\right)^3=49-\left(-19\right)=64=4^3\)
\(2x+1=4\)
\(x=\dfrac{3}{2}\)
d) \(4x^2-3=13\)
\(4x^2=16\)
\(x^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 3:
\(a,\left(5x-2\right)+\left(-3x+1\right)=\left(-42\right)-\left(-91\right)\\ \Rightarrow5x-2+\left(-3x\right)+1=50\\ \Rightarrow2x-1=49\\ \Rightarrow2x=50\\ \Rightarrow x=25\\ b,\left(3-x\right)\left(9+3x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-x=0\\9+3x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\3x=-9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(c,5x^2-\left(-6\right)=\left(-33\right)-\left(-44\right)\\ \Rightarrow5x^2+6=11\\ \Rightarrow5x^2=5\\ \Rightarrow x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(d,2\left(2x-4\right)^2-77=-45\\ \Rightarrow2\left(2x-4\right)^2=32\\ \Rightarrow\left(2x-4\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}2x-4=-4\\2x-4=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=0\\2x=8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Câu 3:
a: Trên tia Ox, ta có: OA<OB
nên điểm A nằm giữa hai điểm O và B
=>OA+AB=OB
hay AB=2(cm)
b: Ta có: A nằm giữa hai điểm O và B
mà OA=AB
nên A là trung điểm của OB
c: Trên đoạn BO, ta có: BC<BO
nên điểm C nằm giữa hai điểm O và B
=>OC+CB=OB
hay OC=3cm
Trên tia Ox, ta có: OA<OC
nên điểm A nằm giữa hai điểm O và C
=>OA+AC=OC
hay AC=1cm