K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Vì ( 2n + 5 ) chia hết cho ( n + 1 ) => [ 2n + 5 - 2 ( n + 1 )] chia hết cho ( n + 1 )

=> 3 chia hết cho n + 1

=> n + 1 là ước của 3

với n + 1 = 1 => n = 0

với n + 1 = 3 +> n = 2

Đáp số : n= 0, n = 2

12 tháng 8 2016

2n + 5 chia hết cho n + 1

=> 2n + 2 + 3 chia hết cho n + 1

=> 2.(n + 1) + 3 chia hết cho n + 1

Do 2.(n + 1) chia hết cho n + 1 => 3 chia hết cho n + 1

Mà \(n\in N\)=> \(n+1\ge1\)=> \(n+1\in\left\{1;3\right\}\)

=> \(n\in\left\{0;2\right\}\)

10 tháng 11 2017

với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia

câu a)  2n +5 = 2n -1 +6

vì 2n -1 chia hết cho 2n -1  nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1

suy ra 2n -1 là ước của 6

vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}

n=1; 2

2n+5chia hết cho 2n+1

=>4n+10chia hết cho 4n+2

=>2n+5chia hết cho 2n+1

29 tháng 11 2019

Ta có: 2n + 5 = (2n - 1) + 6

Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1

=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}

=> 2n \(\in\){2; 3; 4; 7}

Do n \(\in\)N=> n \(\in\){1; 2}

11 tháng 8 2016

\(\frac{n+3}{n}=1+\frac{3}{n}\)

Chia hết \(\Rightarrow n\inƯ\left(3\right)\Rightarrow n\in\left\{-3;-1;1;3\right\}\)

12 tháng 8 2016

P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)

P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3 

- 2n - 1 = -1 <=> n = 0 

- 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)

- 2n - 1 = 1 <=> n = 1

- 2n - 1 = 3 <=> n = 2

Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2

Mình copy bài nhé , mình chỉ muốn giúp bạn thôi

12 tháng 8 2016

toi khong biet

5 tháng 12 2018

\(5n+3⋮n-1\)

\(\Rightarrow5n-1+4⋮n-1\)

\(5\left(n-1\right)⋮n-1\Rightarrow4⋮n-1\)

\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

VS n - 1 = 1 => n = 2 

.... tương tự 

6 tháng 12 2018

❤❤❤Cảm ơn bạn nha Kiều Hoa❤❤❤

28 tháng 11 2016

Ta có:

2n + 5 = 2n - 1 + 6 \(⋮\)2n - 1

=> 6 \(⋮\)2n - 1

=> 2n - 1 \(\in\)Ư(6)

=> 2n -1 \(\in\){1; 2; 3; 6}

=> 2n \(\in\){2; 3; 4; 7}

=> n \(\in\){1; 2} (vì 3\(⋮̸\)2; 7\(⋮̸\)2)

Vậy để 2n + 5 \(⋮\)2n - 1 thì n \(\in\){1; 2} (với n là số tự nhiên)

28 tháng 11 2016

Ta có:\(2n+5⋮2n-1\)

\(\Leftrightarrow\left(2n-1\right)+6⋮2n-1\)

\(\left(2n-1\right)⋮2n-1\)

\(\Rightarrow2n+5⋮2n-1\Leftrightarrow6⋮2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(6\right)\)

Mà 2n-1 là số lẻ và n là số tự nhiên

\(\Rightarrow2n-1\ge-1\)

\(\Rightarrow2n-1\in\left\{-1,1,3\right\}\)

\(\Rightarrow n\in\left\{0,1,2\right\}\)