K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ABC}=90^0\)

Xét (O') có 

\(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ABD}=90^0\)

Ta có: \(\widehat{ABC}+\widehat{ABD}=\widehat{CBD}\)

\(\Leftrightarrow\widehat{CBD}=90^0+90^0=180^0\)

hay C,B,D thẳng hàng(đpcm)

a: góc ABC=1/2*sđ cung AC=90 độ

góc ABD=1/2*180=90 độ

góc CBD=góc ABC+góc ABD=90+90=180 độ

=>C,B,D thẳng hàng

b: góc AFC=1/2*sđ cung AC=90 độ

=>CF vuông góc AD

góc AED=1/2*180=90 độ

=>DE vuông góc AC

góc CED=góc CFD=90 độ

=>CEFD nội tiếp