K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

23 tháng 9 2017

. Ai đó giúp tôi đi mà ._.

28 tháng 9 2017

bài khó quá bạn ạ

Bài 2 :

a ) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

Vậy..........

b ) \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\\x^2+10=0\left(loại\right)\end{matrix}\right.\)

Vậy .......................

c ) \(\left(2x-1\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy.............

d ) \(x^2\left(x-2\right)-2x^2+8x-8=0\)

\(\Leftrightarrow x^3-2x^2-2x^2+8x-8=0\)

\(\Leftrightarrow x^3-4x^2+8x-8=0\)

\(\Leftrightarrow\) \(\left(x-2\right)^3=0\)

\(\Rightarrow x=2\)

25 tháng 7 2018

Bài 2 :

a ) x3−16x=0x3−16x=0

⇔x(x2−16)=0⇔x(x2−16)=0

⇔[x=0x2−16=0⇒[x=0x=±4⇔[x=0x2−16=0⇒[x=0x=±4

Vậy..........

b ) x4−2x3+10x2−20x=0x4−2x3+10x2−20x=0

⇔x3(x−2)+10x(x−2)=0⇔x3(x−2)+10x(x−2)=0

⇔(x−2)(x3+10x)=0⇔(x−2)(x3+10x)=0

⇔x(x−2)(x2+10)=0⇔x(x−2)(x2+10)=0

⇔⎡⎢⎣x=0x−2=0⇒x=2x2+10=0(loại)⇔[x=0x−2=0⇒x=2x2+10=0(loại)

Vậy .......................

c ) (2x−1)2=(x+3)2(2x−1)2=(x+3)2

⇔(2x−1)2−(x+3)2=0⇔(2x−1)2−(x+3)2=0

⇔(2x−1−x−3)(2x−1+x+3)=0⇔(2x−1−x−3)(2x−1+x+3)=0

⇔(x−4)(3x+2)=0⇔(x−4)(3x+2)=0

⇔[x−4=03x+2=0⇒⎡⎣x=4x=−23⇔[x−4=03x+2=0⇒[x=4x=−23

Vậy.............

d ) x2(x−2)−2x2+8x−8=0x2(x−2)−2x2+8x−8=0

⇔x3−2x2−2x2+8x−8=0⇔x3−2x2−2x2+8x−8=0

⇔x3−4x2+8x−8=0⇔x3−4x2+8x−8=0

⇔⇔ (x−2)3=0(x−2)3=0

⇒x=2

29 tháng 6 2019

a) \(x^2+12x+35\)

\(=x^2+5x+7x+35\)

\(=\left(x^2+5x\right)+\left(7x+35\right)\)

\(=x\left(x+5\right)+7\left(x+5\right)\)

\(=\left(x+5\right)\left(x+7\right)\)

b)\(x^2-x-56\)

\(=x^2+7x-8x-56\)

\(=\left(x^2+7x\right)-\left(8x+56\right)\)

\(=x\left(x+7\right)-8\left(x+7\right)\)

\(=\left(x+7\right)\left(x-8\right)\)

c)\(5x^2-x-4\)

\(=5x^2-5x+4x-4\)

\(=\left(5x^2-5x\right)+\left(4x-4\right)\)

\(=5x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(5x+4\right)\)

29 tháng 6 2019

TL:

a)\(x^2+5x+7x+35\) 

 =\(x\left(x+5\right)+7\left(x+5\right)\) 

=\(\left(x+7\right)\left(x+5\right)\) 

b) \(x^2-x-56\)

  =\(x^2+7x-8x-56\) 

=\(x\left(x+7\right)-8\left(x+7\right)\) 

=\(\left(x-8\right)\left(x+7\right)\) 

d)\(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2\) 

=\(\left(2x^2+1\right)^2-4x^2\) 

=\(\left(2x^2+1+4x\right)\left(2x^2+1-4x\right)\)

.......................(tự lm)

hc tốt

25 tháng 9 2016

baif 4 là tìm x đấy m,n ạ

 

25 tháng 9 2016

bn chờ đến 3 rưỡi nhé h mk bận

Bạn đăng nhiều quá nhưng mình chỉ biết phần \(\text{phân tích đa thức thành nhân tử}\) thôi 

\(x^2+2x-3\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-1\right)\left(x+3\right)\)

\(x^2-10x+9\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-9\right)\left(x-1\right)\)

\(x^2-2x-15\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-5\right)\left(x+3\right)\)

\(x^2-2x-48\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-8\right)\left(x+6\right)\)

\(x^2-10x+24\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-6\right)\left(x-4\right)\)

\(4x^2+4x-15\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(2x-3\right)\left(2x+5\right)\)

\(3x^2-7x+2\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-2\right)\left(3x-1\right)\)

\(4x^2-5x+1\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-1\right)\left(4x-1\right)\)

27 tháng 9 2016

Bài 1: CMR các đa thức sau luôn dương vs mọi giá trị biến số:

a) x^2 + x +1

b) x^2 + 3x+3

c) x^2 + y^2 + 2(x-2y) +6

d) 2x^2 + y^2 + 2x( y-1) +2

Bài 2: Phân tích thành nhân tử:

a) x^2 + 2x-3

b) x^2 - 10x +9

c) x^2 - 2x -15

d) x^2 - 2x -48

e) x^2 - 10x+24

f)4x^2 + 4x -15

g) 3x^2 - 7x +2

h) 4x^2 - 5x +1

Bài 3: Tìm x biết :

a) x^2 +5x+6=0

b) x^2 - 10x + 16=0

c) x^2 - 10x +21=0

d) x^2 - 2x -3 =0

e) 2x^2 + 7x +3=0

f) x^2 - x- 6=0

Bài 4:

a)x^3 + 2x^2 - 3=0

b) x^3 - 7x -6=0

c) x^3 + x^2 +4=0

d) x^3 - 2x^2 - x+2 =0

Bạn đăng nhiều quá nhưng mình chỉ biết phần phân tích đa thức thành nhân tử thôi 

x2+2x−3

phân tích đa thức thành nhân tử

(x−1)(x+3)

x2−10x+9

phân tích đa thức thành nhân tử

(x−9)(x−1)

x2−2x−15

phân tích đa thức thành nhân tử

(x−5)(x+3)

x2−2x−48

phân tích đa thức thành nhân tử

(x−8)(x+6)

x2−10x+24

phân tích đa thức thành nhân tử

(x−6)(x−4)

4x2+4x−15

phân tích đa thức thành nhân tử

(2x−3)(2x+5)

3x2−7x+2

phân tích đa thức thành nhân tử

(x−2)(3x−1)

4x2−5x+1

phân tích đa thức thành nhân tử

(x−1)(4x−1)

dài quá !

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

5 tháng 7 2019

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

Vậy tập nghiệm \(S=\left\{-4;0;4\right\}\)

5 tháng 7 2019

b) \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x^2+10\right)\left(x-2\right)=0\)

Mà \(x^2+10>0\)nên \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy tập nghiệm S = { 0;2}