K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\left|8-x\right|=x^2-x\)

<=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\)

<=> \(\orbr{\begin{cases}8=x^2\\8=2x-x^2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\pm2\sqrt{2}\\x\left(2-x\right)=8\end{cases}}\)

Tới đây bạn tự giải nhé,.

5 tháng 8 2018

ta có: |8-x|=x2-x

=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\) 

(+) 8-x=x2-x 

<=> x2=8 <=> x=\(\sqrt{8}\)

(+) 8-x=x-x2

<=> x2-2x+8=0

<=> x2-2x+1+7 =0

<=> (x-1)2+7=0

mà (x-1)2\(\ge\) 0 \(\forall\)x nên (x-1)2+7>0

=> ptvn

vậy phương trình đã cho có 1 nghiệm là x=\(\sqrt{8}\)