Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(2\dfrac{17}{20}-1\dfrac{15}{11}+6\dfrac{9}{20}:3\)
\(=\dfrac{57}{20}-\dfrac{26}{11}+\dfrac{129}{20}:3\)
\(=\dfrac{107}{220}+\dfrac{43}{20}\)
\(=\dfrac{29}{11}\)
b) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\)
\(=\dfrac{31}{7}:\left(\dfrac{7}{5}.\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}\)
\(=\dfrac{5}{7}\)
c) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\)
\(=\left(\dfrac{29}{9}.\dfrac{15}{23}.\dfrac{36}{29}\right):\dfrac{5}{23}\)
\(=\dfrac{60}{23}:\dfrac{5}{23}\)
\(=12\)
a) \(\left(9^4.8+9^4.5\right):\left(9^2.\left(10-1\right)\right)\)
=\(9^4.13:9^3=13.9=117\)
b) 100-(75-25)=100-50=50
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{30}{93}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
=> 2x + 3 = 93
=> 2x = 93 - 3
=> 2x = 90
=> x = 90 : 2
=> x = 45
Vậy x = 45
( x + 1 ) + ( x + 3 ) + ( x + 5 ) + ( x + 7 ) + ( x + 9 ) bằng bao nhiêu
1, Ta có :
\(x+\frac{3}{5}=\frac{4}{7}\div\frac{8}{21}\)
\(x+\frac{3}{5}=\frac{4}{7}\times\frac{21}{8}\)
\(x+\frac{3}{5}=\frac{3}{2}\)
\(x=\frac{3}{2}-\frac{3}{5}\)
\(x=\frac{15}{10}-\frac{6}{10}\)
\(x=\frac{9}{10}\)
Vậy x = \(\frac{9}{10}\)
2, Ta có :
\(\frac{2}{3}+\frac{3}{4}\div x=-\frac{1}{6}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{2}{3}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{4}{6}\)
\(\frac{3}{4}\div x=-\frac{5}{6}\)
\(x=\frac{3}{4}\div\left(-\frac{5}{6}\right)\)
\(x=\frac{3}{4}\times\left(-\frac{6}{5}\right)\)
\(x=-\frac{9}{10}\)
Vậy x = \(-\frac{9}{10}\)
S = 1 x 3 + 3 x 5 + 5 x 7 + 7 x 9 + 9 x 11 + 11 13 + 13 x 15 + 15 x 17 + 17 x 19 + 19 x 21 + 21 x 23 + 23 x 25