Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Để phân số \(\frac{n^2+1}{n-2}\)có giá trị là một số nguyên thì n2 + 1 (tử số) chia hết cho n - 2 (mẫu số)
Ta có: n2 + 1 \(⋮\)n - 2 (n \(\inℤ\))
=> n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2
Vì n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2 với n(n - 2) \(⋮\)n - 2 và 2(n - 2) \(⋮\)n - 2
Nên 3 \(⋮\)n - 2
=> n - 2 \(\in\)Ư (3)
Ư (3) = {-1; -3; 1; 3}
=> n - 2 = -1 hay -3 hay 1 hay 3
n = -1 + 2 hay -3 + 2 hay 1 + 2 hay 3 + 2
n = 1 hay -1 hay 3 hay 5.
Vậy n \(\in\){1; -1; 3; 5}
Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)
\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)
\(\Leftrightarrow6n-9+11⋮2n-3\)
Ta thấy \(6n-9⋮2n-3\forall n\)
\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)
...
Bài 1:
\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)
Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)
Bài 3:
\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)
\(\Rightarrow n-2⋮n+3\)
\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)
Bài 1
Để A nhận giá trị nguyên thì
\(\Leftrightarrow2⋮n-1\)
Vì \(n\inℤ\Rightarrow n-1\inℤ\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{-1;-2;1;2\right\}\)
Ta có bảng giá trị
n-1 | -1 | -2 | 1 | 2 |
n | 0 | -1 | 2 | 3 |
Đối chiếu điều kiện \(n\inℤ\)
Vậy \(n\in\left\{0;-1;2;3\right\}\)thì A nhận giá trị nguyên
Bài 2
Giá bìa của quyển sách đó là:
\(1800:10\%=18000\)(đồng)
Vậy bạn Hùng đã mua quyển sách với giá:
18000-1800=16200 (đồng)
Đáp số: 16200 (đồng)
DKXD cua phan thuc \(n\ne-9\)
\(\frac{7n-1}{n+9}=\frac{7n+63-64}{n+9}=\frac{7\left(n+9\right)-64}{n+9}=\frac{7\left(n+9\right)}{n+9}-\frac{64}{n+9}\)\(=7-\frac{64}{n+9}\)
De phan thuc dat gia tri nguyen => \(\frac{64}{n+9}\)nguyen
<=> \(64⋮n+9\)<=> \(n+9\in U\left(64\right)\)
<=> \(n+9\in\left\{-64;-32;-16;-8;-4;-2;-1;1;2;4;8;16;32;64\right\}\)
=> \(n\in\left\{-73;-41;-25;-17;-13;-11;-10;-7;-5;-1;7;23;55\right\}\)
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Chúc em học tốt^^
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Để A có giá trị nguyên hay A \(\in\)Z thì ( 3 - n ) \(\in\)Ư(4) .
Mà : Ư(4) = { 1 ; 2 ; 4 ; -1 ; - 2 ; -4 }
Nếu : 3 - n = 1 => n = 2
3 - n = 2 => n = 1
3 - n = 4 => n = -1
3 - n = -1 => n = 4
3 - n = -2 => n = 5
3 - n = -4 => n = 7
Vậy : n \(\in\){ 2 ; 1 ; -1 ; 4 ; 5 ; 7 }