Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do 72=23.32
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
Lời giải:
Vì ƯCLN của a,b là $15$ nên đặt $a=15x, b=15y$ với $(x,y)=1$ và $1< x< y$
Khi đó:
BCNN(a,b) = $15xy=525$
$\Rightarrow xy=35$
Vì $(x,y)=1$ và $1< x< y$
$\Rightarrow (x,y)=(5,7)$
$\Rightarrow (a, b) = (15.5, 15.7) = (75, 105)$
\(a.b=\left(a+b\right).\left(a+b\right)\)
\(a.b=\left(a+b\right)^2\)
\(\Leftrightarrow a,b\in\left\{0\right\}\)
Bài 1:
Gọi hai số cần tìm là $a,b$
Gọi $d$ là ước chung lớn nhất của hai số trên.
Khi đó, đặt \(\left\{\begin{matrix} a=dm\\ b=dn\end{matrix}\right.\) với (m,n) nguyên tố cùng nhau.
\(\Rightarrow BCLN (a,b)=dmn\)
Vì \(BCLN (a,b)=6UCLN (a,b)\Rightarrow dmn=6d\)
\(\Leftrightarrow mn=6\)
Giả sử m>n. Khi đó: \((m,n)=(6, 1)\) hoặc \((m,n)=(3,2)\)
Mặt khác: \(a+b=30\Leftrightarrow dm+dn=30\Leftrightarrow d(m+n)=30\)
+) Nếu \((m,n)=(6,1)\Rightarrow d.7=30\Rightarrow d=\frac{30}{7}\not\in\mathbb{N}\) (loại)
+) Nếu \((m,n)=(3,2)\Rightarrow d.5=30\Rightarrow d=6\)
\(\Rightarrow a=18; b=12\)
Vậy hai số cần tìm là 18 và 12
Lời giải:
Gọi ƯCLN (a,b) là $d$ \(\Rightarrow \left\{\begin{matrix} a=dm\\ b=dn\end{matrix}\right.\) với \((m,n)\) nguyên tố cùng nhau.
Khi đó: BCLN (a,b) là: \(dmn\)
Theo bài ra ta có:
\(\left\{\begin{matrix} dm+2dn=48\\ d+3dmn=114\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} d(m+2n)=48(1)\\ d(1+3mn)=114(2)\end{matrix}\right.\)
Từ (2) : \(d(3mn+1)=114=2.3.19\) (*)
Nếu \(d\not\vdots 3\), kết hợp \(3mn+1\not\vdots 3\Rightarrow d(3mn+1)\not\vdots 3\Leftrightarrow 114\not\vdots 3\) (vô lý)
Do đó $d$ chia hết cho $3$ (**)
Mặt khác: Từ (1) suy ra (d) là ước của $48$ (***)
Từ (*); (**); (***) suy ra $d=3$ hoặc $d=6$
+) Nếu $d=3$, thay vào (2) suy ra \(3mn+1=38\rightarrow 3mn=37\not\vdots 3\) (vô lý)
+) Nếu \(d=6\Rightarrow \left\{\begin{matrix} m+2n=8\\ 3mn+1=19\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m+2n=8\\ mn=6\end{matrix}\right.\) suy ra $m$ chẵn.
Từ đây dễ dàng thấy (m,n)=(6;1) hoặc (2;3)
Kéo theo \((a,b)=(36,6);(12;18)\)