Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn cách hack VIP OLM Vĩnh Viễn siêu dễ chỉ 10 phút là xong: youtube.com/watch?v=zYcnHqUcGZE&t
𝙁𝙊𝙍
⊂_ヽ 𝙔𝙊𝙐
\\ Λ_Λ
\( ˇωˇ)
> ⌒ヽ
/ へ\
/ / \\𝙋𝘼𝙂𝙀
レ ノ ヽ_つ
/ /
( (ヽ
| |、\
| 丿 \ ⌒)
| | ) /
ノ ) Lノ
(_/
Lời giải:
Để hàm \(y=\sqrt{x^2-4x+m-3}\) xác định với mọi \(x\in\mathbb{R}\) thì điều kiện cần và đủ là \(x^2-4x+m-3\geq 0\forall x\in\mathbb{R}\)
\(\Leftrightarrow m\geq -x^2+4x+3\forall x\in\mathbb{R}\) hay \(m\geq (-x^2+4x+3)_{\max}=f(x)_{\max}\)
Ta có \(f'(x)=-2x+4=0\Leftrightarrow x=2\)
\(\Rightarrow f(x)_{\max}=f(2)=7\). Do đó chỉ cần $m\geq 7$ thì hàm số luôn xác định với mọi $x\in\mathbb{R}$
Giả sử : \(z=a+bi\left(a;b\in R\right)\) ; M(x;y) là điểm biểu diễn số phức z:
ta có: \(\left|\left(a+bi\right)i-1\right|\le2\) \(\Leftrightarrow\left|ai-b-1\right|\le2\) \(\Leftrightarrow a^2+\left(b+1\right)^2\le4\) \(\Leftrightarrow a^2+b^2+2b-3\le0\)
Vậy quỹ đạo của điểm M(z) là miền trong của hình tròn tâm I(0;-1) , bán kính R=2(Kể cả những điểm nằm trên đường tròn)
5) TCĐ: x=1 (loại C), điểm(-1;0) thuộc đồ thị (loại A, B)
Chọn D.
6, 7) TCN: y=1 (loại C), TCĐ: x=0 (loại B), điểm (1;0) thuộc đồ thị (loại A)
Chọn D.
8) TCĐ: x=1 (loại B), \(\exists\)x\(\in\)(-3;-2)|y=0 (loại A, B)
Chọn D.
9) TCN: y=2 (loại B, D), TCĐ: x=-1 (loại A)
Chọn C.
10) TCN: y=1 (loại A, B), TCĐ: x=1 (loại D)
Chọn C.
11) TCN: y=1 (loại A), TCĐ: x=1 (loại C), D=ad-bc < 0 (loại D)
Chọn B.
12) TCN: y=2 (loại A), TCĐ: x=-1(loại D), D=ad-bc > 0 (loại C)
Chọn B.
13) TCN: y=1 (loại A, B), TCĐ: x=2 (loại D)
Chọn C.
14) TCĐ: x=0,5 (loại B, C, D)
Chọn A.
15) TCN: y=a= -1< 0, x=0 \(\Rightarrow\) y=b= -2< 0. Vậy b<a<0.
Chọn C.
16) x=0 \(\Rightarrow\) y=\(-\dfrac{1}{d}\)> 0 \(\Rightarrow\) d<0, y=0 \(\Rightarrow\) x=\(\dfrac{1}{a}\)> 0 \(\Rightarrow\) a>0 (loại A, B, D)
Chọn C.
mình hỏi những người hiểu biết về câu hỏi này chứ mình không hỏi những người không biết đâu bạn nhé
\(\frac{99}{98}-\frac{99}{97}+\frac{1}{97.98}\)
\(=\frac{99.97}{97.98}-\frac{99.98}{97.98}+\frac{1}{97.98}\)
\(=\frac{99.97-99.98+1}{97.98}\)
\(=\frac{99.\left(97-98\right)+1}{97.98}\)
\(=\frac{99.\left(-1\right)+1}{97.98}\)
\(=\frac{-99+1}{97.98}\)
\(=\frac{-98}{97.98}=\frac{-1}{97}\)
\(a^{4log_{a^2}\sqrt{5}}=a^{2log_a\sqrt{5}}=a^{log_a5}=5\)
Cả 4 đáp án đều sai