K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Áp dụng bđt \(\left|a\right|+\left| b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu.

a) Ta có \(C=\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)

Dấu "=" xảy ra khi \(1\le x\le4\)

Vậy Min C = 3 tại \(1\le x\le4\)

b) Ta có : \(D=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

\(=\left(\left|-x-\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)

Áp dụng bđt trên , ta được \(\left|-x-\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\ge\left|-x-\frac{1}{2}+x+\frac{1}{4}\right|=\frac{1}{4}\)

Lại có \(\left|x+\frac{1}{3}\right|\ge0\)

\(\Rightarrow D\ge\frac{1}{4}+0=\frac{1}{4}\). Dấu "=" xảy ra khi \(\begin{cases}-\frac{1}{4}\le x\le-\frac{1}{3}\\x+\frac{1}{3}=0\end{cases}\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy Min D = \(\frac{1}{4}\Leftrightarrow x=-\frac{1}{3}\)

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

28 tháng 2 2016

Tìm công thức rồi giải đi

28 tháng 2 2016

Phan Ngọc Quốc (>>ai bảo nghỉ học thầy Tí làm chi<<)

8 tháng 10 2020

Bổ đề: Cho tứ giác lồi bất kì thì tổng hai cạnh đối bé hơn tổng hai đường chéo (dễ chứng minh bằng cách sử dụng bất đẳng thức tam giác) (**)

Gọi E là giao điểm của AB và CD. Có thể xảy ra hai khả năng: ^B ≥ ^C hoặc ^B ≤ ^C

Giả sử ^B ≥ ^C (không mất tính tổng quát)

Trên tia đối của tia JA lấy K sao cho JA = JK

Dễ dàng có AD = BK  (tứ giác ABKD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành)

IJ là đường trung bình của ∆ACK nên CK = 2IJ

Áp dụng bổ đề (**) vào tứ giác BCKD, ta được: BD + CK < CD + BK 

Vậy BD + 2IJ < CD + AD (1)

Trong ∆ABC thì AC < AB + BC (2)

Cộng vế với vế (1) và (2), ta được: AC + BD + 2IJ < AB + BC + CD + DA

29 tháng 5 2017

bạn lên mạng ấn chuyên đề cộng trừ - nhân chia số hữu tỉ là ra

29 tháng 5 2017

Với \(x=\frac{a}{m},y=\frac{b}{m}\) ( a, b, m ∈ Z, m > 0)

Khi đó x + y =\(\frac{a}{m}+\frac{b}{m}=\frac{a+b}{m}\)