Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)
Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c
=> a+b+c=0=> a^3+b^3+c^3=3abc=0
=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0
=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0
tìm được x=3
2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> (x-y-1)^2=0 và (y+2)^2=0
=> x=-1;y=-2
Bổ đề: Cho tứ giác lồi bất kì thì tổng hai cạnh đối bé hơn tổng hai đường chéo (dễ chứng minh bằng cách sử dụng bất đẳng thức tam giác) (**)
Gọi E là giao điểm của AB và CD. Có thể xảy ra hai khả năng: ^B ≥ ^C hoặc ^B ≤ ^C
Giả sử ^B ≥ ^C (không mất tính tổng quát)
Trên tia đối của tia JA lấy K sao cho JA = JK
Dễ dàng có AD = BK (tứ giác ABKD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành)
IJ là đường trung bình của ∆ACK nên CK = 2IJ
Áp dụng bổ đề (**) vào tứ giác BCKD, ta được: BD + CK < CD + BK
Vậy BD + 2IJ < CD + AD (1)
Trong ∆ABC thì AC < AB + BC (2)
Cộng vế với vế (1) và (2), ta được: AC + BD + 2IJ < AB + BC + CD + DA
bạn lên mạng ấn chuyên đề cộng trừ - nhân chia số hữu tỉ là ra
Áp dụng bđt \(\left|a\right|+\left| b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu.
a) Ta có \(C=\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
Dấu "=" xảy ra khi \(1\le x\le4\)
Vậy Min C = 3 tại \(1\le x\le4\)
b) Ta có : \(D=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
\(=\left(\left|-x-\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)
Áp dụng bđt trên , ta được \(\left|-x-\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\ge\left|-x-\frac{1}{2}+x+\frac{1}{4}\right|=\frac{1}{4}\)
Lại có \(\left|x+\frac{1}{3}\right|\ge0\)
\(\Rightarrow D\ge\frac{1}{4}+0=\frac{1}{4}\). Dấu "=" xảy ra khi \(\begin{cases}-\frac{1}{4}\le x\le-\frac{1}{3}\\x+\frac{1}{3}=0\end{cases}\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy Min D = \(\frac{1}{4}\Leftrightarrow x=-\frac{1}{3}\)