Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(4-2x\right)-2\left(x+3\right)=12-7x\)
\(\Leftrightarrow\)\(12-6x-2x-6=12-7x\)
\(\Leftrightarrow\)\(6-8x=12-7x\)
\(\Leftrightarrow\)\(x=-6\)
Vậy...
b) \(\left|16+\right|3\left(x-2\right)||-5=20\)
\(\Leftrightarrow\)\(\left|16+\right|3\left(x-2\right)||=25\)(1)
Ta thấy: \(\left|3\left(x-2\right)\right|\ge0\)\(\Rightarrow\)\(16+\left|3\left(x-2\right)\right|>0\)
nên từ (1) \(\Rightarrow\) \(16+\left|3\left(x-2\right)\right|=25\)
\(\Leftrightarrow\)\(\left|3\left(x-2\right)\right|=9\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}3\left(x-2\right)=9\\3\left(x-2\right)=-9\end{cases}}\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
Vậy....
c) \(\left|-5-3^2\right|-||3x+5|-7.2^3|=3^9:3^7\)
\(\Leftrightarrow\)\(14-||3x+5|-56|=9\)
\(\Leftrightarrow\)\(||3x+5|-56|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|-56=5\\\left|3x+5\right|-56=-5\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|3x+5\right|=61\\\left|3x+5\right|=51\end{cases}}\)
đến đây bn giải tiếp nhé
Nhắc lại kiến thức \(!a!=a,,,,\forall a\ge0\)
a) !2x-6!=2x-6 với mọi 2x-6>=0=> x>=3
b) 3-x=!x-3!=!3-x! với mọi 3-x>=0=> x<=3
c)\(C=x^2-2x+3=x^2-x-x+1+2=x\left(x-1\right)-\left(x-1\right)+2=\left(x-1\right)^2+2\)
để C chia hết cho (x-1) => 2 phải chia hết cho (x-1)
x-1=U(2)={-2,-1,1,2}
x={-1,0,2,3}
Ta luôn biết biểu thức hay 1 số thực âm nằm trong dấu trị tuyệt đối luôn mang giá trị dương. Vì thế, giá trị nhỏ nhất của biểu thức trong trị tuyệt đối chỉ có thể bằng 0. Suy ra:
\(A=\left|x-\frac{1}{2}\right|\ge0,\forall x\in R\)Vậy minA = 0 khi \(x=\frac{1}{2}\)
\(B=\left|x+\frac{3}{4}\right|+2\ge2,\forall x\in R\)Vậy minB = 2 khi \(x=-\frac{3}{4}\)
1 sắp xếp nè : \(-1\frac{1}{3};-0.875;-\frac{5}{6};0;0.3;\frac{4}{13}\)
2. a) Áp dụng BĐT |a|+|b| \(\ge\) |a+b| (1)
Ta có \(\left|x-200\right|+\left|300-x\right|\ge\left|x-200+300-x\right|=100\)
Amin = 100 khi x=200 hoặc x=300
b) ÁP dụng BĐT (1) ta có
\(B=\left|x-5\right|+\left|x-7\right|=\left|5-x\right|+\left|x-7\right|\ge\left|5-x+x-7\right|=2\)
=> Bmin=2 khi x=5 hoặc x=7
<=> |x+2| = 13
<=> \(\orbr{\begin{cases}x+2=13\\x+2=-13\end{cases}\Rightarrow}\orbr{\begin{cases}x=11\\x=-15\end{cases}}\)
Vậy.........
hok tốt
..........
\(|x+2|=12+\left(-3\right)+\left|-4\right|\)
\(|x+2|=12-3+4\)
\(\left|x+2\right|=13\)
\(\Rightarrow x\in\left\{-15;11\right\}\)
| | x + 5 | - 4 | = 3
<=> x + 5 = 3 + 4
<=> x + 5 = 7
<=> x = 7 - 5
<=> x = 2
Chúc bạn học tốt!!!
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
a) |x|=-1
Mà |x|\(\ge\)0
\(\Rightarrow\)Không có giá trị của x
Vậy không có giá trị của x thỏa mãn.
b) |x|=|-5|
|x|=5
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
Vậy \(x=\pm5\)
Mình rất đồng ý với bài của bạn Nguyệt nhưng câu b kết luận sai