Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014}{2016}+\frac{2015}{2016}>\frac{2014+1015}{2015+2016}=B\Rightarrow A>B\)
A=\(\frac{10^{2015}+1}{10^{2016}+1}\)=>10A=\(\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}\)= \(\frac{10^{2016}+10}{10^{2016}+1}\)=\(\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}\)=\(\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}\)=1+\(\frac{9}{10^{2016}+1}\)
B=\(\frac{10^{2016}+1}{10^{2017}+1}\)=>10B=\(\frac{10.\left(10^{2016}+1\right)}{10^{2017+1}}=\frac{10^{2017}+10}{10^{2017}+1}\)= \(\frac{\left(10^{2017}+1\right)+9}{10^{2017}+1}\)=\(\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}\)= 1+\(\frac{9}{10^{2017}+1}\)
Vì \(10^{2016}+1< 10^{17}+1\)=>\(\frac{9}{10^{2016}+1}\)>\(\frac{9}{10^{2017}+1}\)nên \(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)=>10A>10B
Vậy A>B
1.
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{98}{99}\)
\(1-\frac{1}{x-1}=\frac{98}{99}\)
\(\frac{1}{x-1}=1-\frac{98}{99}\)
\(\frac{1}{x-1}=\frac{1}{99}\)
\(\Rightarrow x-1=99\)
\(\Rightarrow x=99+1=100\)
b) \(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{13}\right)+10.\left(\frac{1}{13}-\frac{1}{15}\right)+10.\left(\frac{1}{15}-\frac{1}{17}\right)+...+10.\left(\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-\left[10.\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}=1\)
c) 5x + 2 . 5x + 23 = 83
5x . ( 1 + 2 ) + 8 = 83
5x . 3 = 83 - 8
5x . 3 = 75
5x = 75 : 3
5x = 25
\(\Rightarrow\)5x = 52
\(\Rightarrow\)x = 2
2.
Ta thấy \(2016^{2016}>2016^{2016}-3\)
\(\Rightarrow B=\frac{2016^{2016}}{2016^{2016}-3}>\frac{2016^{2016}+2}{2016^{2016}-3+2}=\frac{2016^{2016}+2}{2016^{2016}-1}=A\)
\(\Rightarrow A< B\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{99}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{99}\)(áp dụng công thức)
= \(1-\frac{1}{x+1}=\frac{98}{99}\)
= \(\frac{1}{x+1}=1-\frac{98}{99}\)(quy tắc tìm số trừ)
= \(\frac{1}{x+1}=\frac{1}{99}\Rightarrow\frac{1}{x+1}=\frac{1}{98+1}\Rightarrow x=98\)
Vậy x = 98 :)
Còn nữa, công thức mà mình áp dụng là: \(\frac{a}{b.c}=\frac{1}{b}-\frac{1}{c}\)nếu \(a=c-b\)
a) ta có |3+5| = |3|+|5| ( vì 3 x 5 > 0)
b) ta có |(-3) + (-5)| = |-3| + |-5| ( vì (-3) x (-5)