Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là giao DB và EF
Có BF=BC=AD và BE=AB
Ta có: ˆEBF+ˆABC=180∘EBF^+ABC^=180∘
ˆBAD+ˆABC=180∘BAD^+ABC^=180∘
⇒ˆEBF=ˆBAD⇒EBF^=BAD^
ΔBAD=ΔEBF(c.g.c)ΔBAD=ΔEBF(c.g.c)
⇒ˆBEF=ˆABD⇒ˆBEF+ˆEBH=ˆABD+ˆEBH⇒ˆBEF+ˆEBH=90∘⇒ˆEHB=90∘⇒BEF^=ABD^⇒BEF^+EBH^=ABD^+EBH^⇒BEF^+EBH^=90∘⇒EHB^=90∘
Suy ra DB⊥EF
Dấu ^ sửa lại thành kí hiệu góc nha :3
Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :
Nhận xét : A > 0
Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)
\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)
\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)
Vậy A = 2
MÌNH KO THẤY ĐƯỜNG KO THẤY BÀI GÌ HẾT
Ta có:
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès)
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès)
=> DE / AM + DF / AM = BD / BM + CD / CM
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2)
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2)
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2
<=> DE + DF = 2AM (điều phải chứng minh)
b)
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt)
=> Tứ giác ANDM là hình bình hành => AN = DM
- Ta có: AN // BD (gt)
=> AN / BD = NE / DE (Định lí Thalès)
<=> NE = (DE . AN) / BD
- Ta có: DE + DF = 2AM (cm câu a)
<=> DE + (DE + NE + NF) = 2AM
<=> 2DE + EF = 2AM
<=> EF = 2AM - 2DE = 2(AM - DE)
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD]
(do DE/ AM = BD / BM => AM = (DE . BM) / BD )
<=> EF = 2. [DE . (BM - BD) / BD]
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM)
<=> EF = 2NE
<=> NE = EF / 2
=> N là trung điểm của EF
Vậy NE = NF (điều phải chứng minh)
đề bài đâu chị