K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 12 2020

Gọi E là giao điểm của AC và BD \(\Rightarrow\left\{{}\begin{matrix}E\in\left(SAC\right)\\E\in\left(SBD\right)\end{matrix}\right.\)

\(\Rightarrow SE=\left(SAC\right)\cap\left(SBD\right)\)

Kéo dài AD và BC cắt nhau tại F

\(\Rightarrow SF=\left(SAD\right)\cap\left(SBC\right)\)

b.

Chắc là trung điểm của SC và SD?

M và trung điểm SC, N là trung điểm SD

\(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN//CD\) , mà \(CD//AB\Rightarrow MN//AB\Rightarrow MN//\left(SAB\right)\)

19 tháng 12 2020

Cảm ơn bạn

NV
4 tháng 1 2022

Áp dụng định lý Talet trong tam giác KAD:

\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)

\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK

Mà E, F là trung điểm SA, SD

\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)

\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)

Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)

NV
4 tháng 1 2022

undefined

NV
30 tháng 12 2021

a.

Do M là trung điểm SC, N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAC

\(\Rightarrow MN||AC\)

Mà \(AC\in\left(ABCD\right)\Rightarrow MN||\left(ABCD\right)\)

Gọi O là giao điểm AC và BD \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)

\(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (ABCD), kéo dài AB và CD cắt nhau tại E

Trong mp (SCD), nối EM cắt SD tại F

\(\Rightarrow F=SD\cap\left(MAB\right)\)

NV
30 tháng 12 2021

undefined

20 tháng 12 2021

Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E

⇒E∈(SBC)⇒E∈(SBC)

Do AD song song BE, áp dụng Talet:

ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE

⇒MN⇒MN là đường trung bình tam giác SAE

⇒MN//SE⇒MN//(SBC)

15 tháng 12 2021

15 tháng 12 2021

NV
30 tháng 12 2021

Gọi E là giao điểm AB và CD

\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

b.

Do M là trung điểm SC, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình tam giác SBC

\(\Rightarrow MN||SB\)

Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)

c.

Trong mp (ABCD), nối AN cắt CD kéo dài tại F

Trong mp (SCD), nối FM kéo dài cắt SD tại G

\(\Rightarrow G=SD\cap\left(AMN\right)\)

NV
30 tháng 12 2021

undefined

a: \(E\in AC\subset\left(SAC\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD với BC

\(K\in AD\subset\left(SAD\right)\)

\(K\in BC\subset\left(SBC\right)\)

Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD

a: \(E\in AC\subset\left(SAC\right);E\in BD\subset\left(SBD\right)\)

=>\(E\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)

b: Gọi K là giao của AD và BC

\(K\in AD\subset\left(SAD\right);K\in BC\subset\left(SBC\right)\)

=>\(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)

c: Xét (SAB) và (SCD) có

AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy; xy đi qua S và xy//AB//CD