K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 8 2021

11c.

\(\left\{{}\begin{matrix}S_1^2=AD^2\\S_2^2=BD^2\end{matrix}\right.\) \(\Rightarrow\sqrt{S_1S_2}=AD.BD\) nên ta cần chứng minh: \(CD^2\le AD.BD\)

Kẻ \(DE\perp BC\Rightarrow\Delta CDE\) vuông cân tại E \(\Rightarrow CD^2=2DE^2\)

Mặt khác theo talet: \(\dfrac{DE}{AC}=\dfrac{BD}{AB}\Rightarrow DE=\dfrac{AC}{AB}.BD\Rightarrow2DE^2=2\dfrac{AC^2}{AB^2}.BD^2\)

Nên ta cần chứng minh: \(\dfrac{2AC^2}{AB^2}.BD^2\le AD.BD\Leftrightarrow\dfrac{2AC^2}{AB^2}\le\dfrac{AD}{BD}=\dfrac{AC}{BC}\)

\(\Leftrightarrow2AC.BC\le AB^2\)

Điều này đúng do: \(2AC.BC\le AC^2+BC^2=AB^2\) (đpcm)

Dấu "=" xảy ra khi D là trung điểm AB hay tam giác vuông cân tại C

NV
23 tháng 8 2021

undefined

NV
7 tháng 1 2022

22.

ĐKXĐ: \(y\ne1\)

\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+\dfrac{2}{1-y}=4\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

Trừ pt dưới cho trên:

\(\Rightarrow\dfrac{1}{1-y}=-2\)

\(\Rightarrow1-y=-\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\)

Thế vào \(x^2-\dfrac{1}{y-1}=2\)

\(\Rightarrow x^2=4\Rightarrow x=\pm2\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right);\left(-2;\dfrac{3}{2}\right)\)

NV
7 tháng 1 2022

b.

ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

\(Hệ\Leftrightarrow\left\{{}\begin{matrix}2y^2-\dfrac{10}{2x+1}=8\\2y^2-\dfrac{11}{2x+1}=7\end{matrix}\right.\)

Trừ pt trên cho dưới:

\(\Rightarrow\dfrac{1}{2x+1}=1\)

\(\Rightarrow2x+1=1\)

\(\Rightarrow x=0\)

Thế vào \(y^2-\dfrac{5}{2x+1}=4\)

\(\Rightarrow y^2=9\Rightarrow y=\pm3\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(0;3\right);\left(0;-3\right)\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Tại sao không giải ra $\sqrt{P}$ và $\sqrt{P}$?

Em đã có $P$ rồi, nhưng với $\sqrt{P}$, em làm sao rút gọn được khi mà $P$ đã khá gọn rồi. Cũng chẳng có giá trị nào của $x$ để tính cụ thể $P, \sqrt{P}$ rồi đi so sánh. Vì vậy cách này không khả thi.

Vậy thì phải tìm hướng khác. Muốn so sánh 2 số, ta xét hiệu hai số đó.

$P-\sqrt{P}=\sqrt{P}(\sqrt{P}-1)$

Rõ ràng $\sqrt{P}$ đã dương rồi, giờ ta phải xem xét xem $\sqrt{P}-1$ âm hay dương, hay $P$ có lớn hơn 1 không 

Đó là lý do vì sao bài giải như trên.

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Còn câu hỏi khi nào giải ra từng cái $P$ và $\sqrt{P}$, thì đó là khi đề cho $x=2$ chả hạn, so sánh $P$ và $\sqrt{P}$.

Nhưg hầu như sẽ chẳng có đề nào ra kiểu vậy, mà đa số lợi dụng tính chất của phân thức đó để so sánh (ví dụ như trong bài tính chất nổi bật là $P>1$) cho nhanh. Đó là cái hay của đề bài.

5 tháng 12 2021

21 tháng 11 2021

giải bài 8 -> 11 giúp mình đang cần ;-;, mấy bài kia mình làm rồi nhưng chưa bt đúng sai

 

20 tháng 1 2023

chia nhỏ ra từng bài đi bạn

15 tháng 12 2022

B3 

1) \(\sqrt{ }\)(2x-1)2 =5 

\(\Leftrightarrow\) |2x-1| =5 

\(\Leftrightarrow\) 2x-1 =5 hoặc 2x -1 = -5 

\(\Leftrightarrow\) 2x=6 hoặc 2x= -4 

\(\Leftrightarrow\) x=3 hoặc x= -2 

2) 4-5x = 144 

\(\Leftrightarrow\) -5x =140 

\(\Leftrightarrow\) x= -60 

3) \(\sqrt{ }\)(2x-2)2=2x-2 

\(\Leftrightarrow\) | 2x -2 | =2x-2 

\(\Leftrightarrow\) 2x-2 =2x-2 hoặc 2x-2 =-2x +2 

\(\Leftrightarrow\) 0x=0 (loại ) hoặc x=2 ( nhận ) 

15 tháng 12 2022

Có bốn câu sao bạn làm mỗi một câu thế?