Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
a) ( 3x - 1 )2 - 16 = ( 3x - 1 )2 - 42 = ( 3x - 1 - 4 )( 3x - 1 + 4 ) = ( 3x - 5 )( 3x + 3 ) = 3( 3x - 5 )( x + 1 )
b) ( 5x - 4 )2 - 49x2 = ( 5x - 4 )2 - ( 7x )2 = ( 5x - 4 - 7x )( 5x - 4 + 7x ) = ( -2x - 4 )( 12x - 4 ) = -2( x + 2 ).4( 3x - 1 ) = -8( x + 2 )( 3x - 1 )
c) ( 2x + 5 )2 - ( x - 9 )2 = [ ( 2x + 5 ) - ( x - 9 ) ][ ( 2x + 5 ) + ( x - 9 ) ] = ( 2x + 5 - x + 9 )( 2x + 5 + x - 9 ) = ( x + 14 )( 3x - 4 )
d) ( 3x + 1 )2 - 4( x - 2 )2 = ( 3x + 1 )2 - 22( x - 2 )2 = ( 3x + 1 )2 - [ 2( x - 2 ) ]2 = ( 3x + 1 )2 - ( 2x - 4 )2 = [ ( 3x + 1 ) - ( 2x - 4 ) ][ ( 3x + 1 ) + ( 2x - 4 ) ] = ( 3x + 1 - 2x + 4 )( 3x + 1 + 2x - 4 ) = ( x + 5 )( 5x - 3 )
e) 9( 2x + 3 )2 - 4( x + 1 )2 = 32( 2x + 3 )2 - 22( x + 1 )2 = [ 3( 2x + 3 ) ]2 - [ 2( x + 1 ) ]2 = ( 6x + 9 )2 - ( 2x + 2 )2 = [ ( 6x + 9 ) - ( 2x + 2 ) ][ ( 6x + 9 ) + ( 2x + 2 ) ] = ( 6x + 9 - 2x - 2 )( 6x + 9 + 2x + 2 ) = ( 4x + 7 )( 8x + 11 )
f) 4b2c2 - ( b2 + c2 - a2 )2 = ( 2bc )2 - ( b2 + c2 - a2 )2 = [ 2bc - ( b2 + c2 - a2 ) ][ 2bc + ( b2 + c2 - a2 ] = ( 2bc - b2 - c2 + a2 )( 2bc + b2+ c2 - a2 ) = [ a2 - ( b2 - 2bc + c2 ) ][ ( b2 + 2bc + c2 ) - a2 ] = [ a2 - ( b - c )2 ][ ( b + c )2 - a2 ] = ( a - b + c )( a + b - c )( b + c - a )( b + c + a )
g) ( ax + by )2 - ( ay + bx )2
= [ ( ax + by ) - ( ay + bx ) ][ ( ax + by ) + ( ay + bx ) ]
= ( ax + by - ay - bx )( ax + by + ay + bx )
= [ a( x - y ) - b( x - y ) ][ a( x + y ) + b( x + y ) ]
= ( a - b )( x - y )( x + y )( a + b )
h) ( a2 + b2 - 5 )2 - 4( ab + 2 )2
= ( a2 + b2 - 5 )2 - 22( ab + 2 )2
= ( a2 + b2 - 5 )2 - [ 2( ab + 2 ) ]2
= ( a2 + b2 - 5 )2 - ( 2ab + 4 )2
= [ ( a2 + b2 - 5 ) - ( 2ab + 4 ) ][ ( a2 + b2 - 5 ) + ( 2ab + 4 ) ]
= ( a2 + b2 - 5 - 2ab - 4 )( a2 + b2 - 5 + 2ab + 4 )
= [ ( a2 - 2ab + b2 ) - 9 ][ ( a2 + 2ab + b2 ) - 1 ]
= [ ( a - b )2 - 32 ][ ( a + b )2 - 12 ]
= ( a - b - 3 )( a - b + 3 )( a + b - 1 )( a + b + 1 )
i) ( 4x2 - 3x - 18 )2 - ( 4x2 + 3x )2
= [ ( 4x2 - 3x - 18 ) - ( 4x2 + 3x ) ][ ( 4x2 - 3x - 18 ) + ( 4x2 + 3x ) ]
= ( 4x2 - 3x - 18 - 4x2 - 3x )( 4x2 - 3x - 18 + 4x2 + 3x )
= ( -6x - 18 )( 8x2 - 18 )
= -6( x + 3 ).2( 4x2 - 9 )
= -12( x + 3 )( 2x - 3 )( 2x + 3 )
k) 9( x + y - 1 )2 - 4( 2x + 3y + 1 )2
= 32( x + y - 1 )2 - 22( 2x + 3y + 1 )2
= [ 3( x + y - 1 ) ]2 - [ 2( 2x + 3y + 1 ) ]2
= ( 3x + 3y - 3 )2 - ( 4x + 6y + 2 )2
= [ ( 3x + 3y - 3 ) - ( 4x + 6y + 2 ) ][ ( 3x + 3y - 3 ) + ( 4x + 6y + 2 ) ]
= ( 3x + 3y - 3 - 4x - 6y - 2 )( 3x + 3y - 3 + 4x + 6y + 2 )
= ( -x - 3y - 5 )( 7x + 9y - 1 )
l) -4x2 + 12xy - 9y2 + 25
= 25 - ( 4x2 - 12xy + 9y2 )
= 52 - ( 2x - 3y )2
= ( 5 - 2x + 3y )( 5 + 2x - 3y )
m) x2 - 2xy + y2 - 4m2 + 4mn - n2
= ( x2 - 2xy + y2 ) - ( 4m2 - 4mn + n2 )
= ( x - y )2 - ( 2m - n )2
= ( x - y - 2m + n )( x - y + 2m - n )
\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)
e đăng đừng Ctrl+V nhiều quá lóe mắt :vv