Bài 1: Cho tam giác ABC , các đường phân giác của góc ngoài tai B và C cất nhau ở E . Gọi G,H,K thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC,AB,ACa) có nhận xét gì về các độ dài EH , EG , EKb) CM AE là phân giác của góc BACc) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CEtaij D, F . CMR EA vuông góc với DFd) Các đường AE, BF , CD là các...
Đọc tiếp
Bài 1: Cho tam giác ABC , các đường phân giác của góc ngoài tai B và C cất nhau ở E . Gọi G,H,K thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC,AB,AC
a) có nhận xét gì về các độ dài EH , EG , EK
b) CM AE là phân giác của góc BAC
c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CEtaij D, F . CMR EA vuông góc với DF
d) Các đường AE, BF , CD là các đường gì trong tam giác ABC
e) Các đường EA , FB , DC là các đường gì trong tam giác DEF
Mình làm được câu a,b,c rồi còn 2 câu d,e nữa rất mong các bạn giải giúp mình 2 câu cuối
Bài 2 : Cho tam giác ABC vuông tại A . vé đường cao AH . trên cạnh BC lấy điểm Dsao cho BD =BA
a) CM góc BAD = góc ADB
b) CM AD là phân giác của góc HAC
c) vẽ DK vuông góc với AC (K\(\in\)AC) . CM AK =AH
d) CM AB+AC < BC + 2AH
Mình mới làm được câu a , mấy câu còn lại mong các bạn giúp mình nhé ! Bạn nào làm nhanh nhất mình sẽ tích cho bạn đó . Cảm ơn nhiều .hi hi !!
ABCtx
a) Xét △AMB và △AMC có:
AB = AC ( gt)
AM chung
BM = MC (gt)
\(\Rightarrow\) △AMB = △AMC (c.c.c)
b) Ta có : △AMB = △AMC
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)
Mà \(\widehat{BMA}=\widehat{CMA}\) (△AMB = △AMC)
\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\) AM ⊥ BC (ĐPCM)
d) Gọi tia đối của tia AC là tia Ax.
Vì At là tia phân giác \(\widehat{xAB}\)
\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)
Vì △ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)
\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)
\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)At // BC (ĐPCM)