K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

x+ 13x -198 = 0

(=) x- 9x + 22x -198 = 0

(=) x ( x - 9) + 22 ( x - 9) = 0

(=) ( x - 9)(x + 22) = 0

(=) x - 9 = 0             (=) x = 9 

      x + 22 = 0                x = - 22

28 tháng 2 2017

-x2-13x=198

=>x=22

k nhé và kb

14 tháng 11 2016

ABCD laf hình chữ nhật =>AC=BD

Mà BF=AC=> BF=BD=>tg bdf cân tại b => goc dac=adi

AI=IC=1/2 AC và DI= IB =1/2 BD va BF=BD =>AI=ID=>AID can

14 tháng 11 2016

b va c de sau nhe

5 tháng 7 2016

(x-5)^2+(x+3)^2 = x^2 -10x + 25 + x^2 + 6x +9= 2(x^2 - 16) -5x +7 = 2(x-4)(x+4) - 5x + 7

5 tháng 7 2016
Cảm ơn bạn z do nha

\(2x^2+4x+3y^2=19\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+3y^2=21\)

\(\Leftrightarrow2\left(x+1\right)^2+3y^2=21\)

Mà \(2\left(x+1\right)^2;3y^2\ge0\)

\(\Rightarrow0\le3y^2\le21\)

\(\Rightarrow0\le y^2\le7\)Mà \(y\in Z\Rightarrow y^2\in Z\)

\(\Rightarrow y^2\in\left\{0,1,4\right\}\Rightarrow y\in\left\{0,\pm1,\pm2\right\}\)

Ta có các trường hợp  

y01-1-22
y201144
3y20331212
2(x+1)221181899
(x+1)221/2(loại)999/2(loại)9/2(loại)

x=2,-4 

Vậy \(\left(x,y\right)=\left(2;1\right),\left(2;-1\right),\left(-4;1\right),\left(-4;-1\right)\)

13 tháng 1 2018

pt <=> (2x^2+4x+2)+3y^2=21

<=> 2.(x+1)^2+3y^2 = 21

=> 3y^2 < = 21

Mà 3y^2 >= 0 => 0 < = 3y^2 < = 21

=> 3y^2 thuộc {0;3;6;9;12;15;18;21}

=> y^2 thuộc {0;1;2;3;4;5;6;7}

Mà 21 lẻ , 2.(x+1)^2 chẵn => 3y^2 lẻ => y^2 lẻ

=> y^2 thuộc {1;3;5;7} => y^2 = 1 ( vì y^2 là số chính phương )

=> x^2=9 ; y^2=1

=> (x;y) thuộc {(-1;-1);(-1;1);(1;1);(1;-1)}

Tk mk nha

5 tháng 7 2016

a) =>(x+3)(x-2)-2(x+1)2=(x-3)2-2x(x-2)

=>x2+x-6-2(x2+2x+1)=x2-6x+9-2x2+4x

=>x2+x-6-2x2-4x-2-x2+6x-9+2x2-4x=0

=>-x-17=0

=>x=-17

b)=>x3-6x2+12x-8+x2-10x+25=x3-5x2-7x+3

=>x3-5x2+2x+17-x3+5x2+7x-3=0

=>9x+14=0

=>x=\(\frac{-14}{9}\)

5 tháng 7 2016

bn này vô ơn lắm, mk giải mệt ng mà k h,

ngu sao giai nữa

14 tháng 11 2016

tao chịu ko hiểu mới học lớp 6 nhé very sorrrrrrrrrrrrrryyyyyyyyyyyyyyyyyyyyyy

14 tháng 11 2016

k nha

ai km ình k lai có 21 nick đó

26 tháng 12 2017

<=> (12²x²+2.12.7x + 7²).(6x²+7x+2) = 3 
<=> [24.(6x² +7x +2) +1].(6x² +7x +2) =3 
đặt: a= 6x² +7x +2 
<=> (24a+1).a = 3 
=> a=...

26 tháng 12 2017

⇔ (3a-1)(8a+3)=0 
⇔ a=1/3 hoặc a=−3/8 

16 tháng 10 2016

a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 

b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7

k minh nha
Mà a^5 chia hết cho 5 => a chia hết cho 5

16 tháng 10 2016

Chứng minh

a) a5-a chia hết cho 5 

b) a​7-a chia hết cho 7

a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 

b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7
Mà a^5 chia hết cho 5 => a chia hết cho 5

nhé !