Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)Xét tam giác DME và tam giác DMF
Có:DE=DF(gt)
ME=MF(gt)
DM cạnh chung
Do đó:tam giác DME=tam giácDMF
4.6
Ta có: \(\widehat{ABC}+\widehat{DCB}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Lời giải:
a. Ta thấy: $AB\perp BC, CD\perp BC$
$\Rightarrow AB\parallel CD$
$BC\perp CD; DE\perp CD$
$\Rightarrow BC\parallel DE$
b.$AB\perp BC, BC\parallel DE\Rightarrow AB\perp DE$
Mà $DE\perp EF$
$\Rightarrow AB\parallel EF$
c.
Do $AB\parallel CD$ nên:
$\widehat{AIC}+\widehat{IAB}=180^0$ (2 góc trong cùng phía)
$\Rightarrow \widehat{AIC}=180^0-\widehat{IAB}=180^0-50^0=130^0$
`B=x^2-9=0`
`-> x^2=0+9`
`-> x^2=9`
`-> x^2=(+-3)^2`
`-> x=+-3`
Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.
Biết d song2 với d' thì => góc A1 = góc B3 và:
b) góc A1 = góc B4 và
c) góc A1+ B2=180 độ
a) Nếu 1 đường thẳng cắt 2 đường thẳng song2 thì:
a) 2 góc so le trong bằng nhau
b) 2 góc đồng vị bằng nhau
c) 2 góc trong cùng phía bù nhau
Biết : (hình 25b)
a) góc A4 = góc B2
hoặc b) góc A1 = góc B1
hoặc c) góc A1 + B2 = 180 độ
thì suy ra d song2 với d'
Nếu 1 đường thẳng cắt 2 đường thẳng
mà a) 2 góc so le trong bằng nhau
hoặc b) 2 góc đồng vị bằng nhau
hoặc c) 2 góc trong cùng phía bù nhau thì 2 đường thẳng đó song2 với nhau.
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)
a)
Ta thấy ACB=50 độ
CBE=50 độ
Mà 2 góc này là 2 góc so le trong
=>a // b (đpcm)
b)Ta thấy:
AB ⊥ a mà a // b
=>AB ⊥ b (Từ vuông góc đến song song) (đpcm)
c)Ta có:
DBE+BED+BDE=180 độ (Tổng 3 góc trong tam giác)
=>BDE=180-DBE-BED=180-50-40=90 độ
Mà BDE+CDE=180 độ (2 góc kề bù)
=>CDE=180-BDE=180-90=90 độ
Vậy CDE=90 độ
a, có vì cùng vuông góc với MN
b, P=180-55=125;
2:EDG=180-90=90
EIG=180-135=45
3: D_2=3D_1 nên: D_2=135 độ; D_1=45 độ
AD song song BC(cùng vuông góc AB)
nên C2=D1=45;C1=135