K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

a: Bậc của M là 5

b: Các hạng tử là \(x^3yz;-x^5;3\)

Bài 6:

\(N=x^2y-5x^2y-4x^3+7x^2+3xy^2-\dfrac{3}{4}=-4x^2y-4x^3+7x^2+3xy^2-\dfrac{3}{4}\)

31 tháng 12 2021

Dap an D

17 tháng 10 2021

Câu 3: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)

Do đó: x=54; y=36

17 tháng 10 2021

B giúp mik câu 4 đc k ạ

11 tháng 10 2021

Bài 4: 

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Leftrightarrow\dfrac{c}{a}=\dfrac{d}{b}\)

hay \(\dfrac{a+c}{a}=\dfrac{b+d}{b}\)

 

19 tháng 8 2021

x = 1 nha bạn mình đangtìm lời giải

5 tháng 11

          Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                        Giải: 

         20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\)  (\(x\) \(\in\) N)

    \(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) \(\dfrac{10}{7}\)\(x\) 

      \(x\) = \(\left(\dfrac{10}{7}\right)^x\)\(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)

          Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)

          Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)

          Nếu \(x\) > 1 ta có:  \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên 

                   \(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\)  (loại)

Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.

Vậy \(x\) = 1 

                   

9 tháng 5 2019

      Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu

     A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|

     Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)

                         x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)

                       2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)

        Vậy Min A =c+d-a-b khi b ≤ x ≤ c 

~ Học tốt ~ K cho mk nha. Thank you.

9 tháng 5 2019

Bạn "  I love Family " ơi, đề bài ng' ta chỉ cho a,b,c,d là các số dương thôi mà sao cách giải giống với kiểu đềa<b<c<d trên mạng vậy?
 

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{18}{9}=2\)

Do đó: x=8; y=10