Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}-2=\dfrac{1}{15}\)
=>\(\dfrac{x}{3}=2+\dfrac{1}{15}=\dfrac{31}{15}\)
=>\(x=\dfrac{31}{15}\cdot3=\dfrac{31}{5}\)
Vì (2x-1)^6=(2x-1)^8
(2x-1)^8-(2x-1)^6=0
(2x-1)^6[(2x-1)^2-1)]=0
th1 (2x-1)^6 suy ra 2x-1=0 suy ra x=1/2
th2 (2x-1)^2-1=0
(2x-1)^2=1
suy ra 2x-1 bằng 1;-1
th1 2x-1=1 suy ra x=1
2x-1=-1 suy ra x=0
đầu bài là như này đúng không hả bạn
\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
Ta có :\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
\(\frac{2}{3}:\left(x-1\right)\)\(=\frac{1}{4}\)
\(\left(x-1\right)\)\(=\frac{8}{3}\)
\(x=\frac{11}{3}\)
Ta có: (2 - x)(4/5 - x) < 0
=> \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}}\) hoặc \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< \frac{4}{5}\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 2\\x>\frac{4}{5}\end{cases}}\)
=> \(\frac{4}{5}< x< 2\)
\(\left(2-x\right)\left(\frac{4}{5}-x\right)< 0\)
TH1 : \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}2>x\\\frac{4}{5}< x\end{cases}}}\)\(\Rightarrow\frac{4}{5}< x< 2\)
Th2 : \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}\Rightarrow\hept{\begin{cases}2< x\\\frac{4}{5}>x\end{cases}}}\)\(\Rightarrow x\in\varnothing\)
Vậy \(\frac{4}{5}< x< 2\)
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)