Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1
Bài 1
a) \(A=\left\{37;38;39;...;91;92\right\}\)
b) \(B=\left\{0;1;2;3;4;5...\right\}\)
Bài 2
a) 210 + 47.84 + 16.47
= 210 + 47.(84 + 16)
= 210 + 47.100
= 210 + 4700
= 4910
b) 53.37 + 53.64 - 57:54
= 53.37 +5 3.64 +5 3
= 53.(37 + 64 - 1)
= 53.100
= 125.100
= 12 500
c) (335 + 334 - 333) : 332
= 335:332 + 334:332 - 333:332
= 33 + 32 - 3
= 27 + 9 - 3
= 33
d) 13 + 16 + 19 + ... + 79 + 82 + 85
25 số hạng
=> Tổng = (85 + 13) x 25:2 = 1225
Bài 3
a) 271 + (x - 86) = 368
x - 86 = 368 - 271
x - 86 = 97
x = 86 + 97
x = 183
b) 2.3x + 4.52= = 154
2.3x+ 100 = 154
2.3x = 154 - 100
2.3x = 54
3x = 54:2
3x = 27
3x = 33
=> x = 3
c) 24x - 3 + 74 = 106
24x - 3 = 106 - 74
24x - 3 = 32
24x - 3 = 25
=> 4x - 3 = 5
4x = 5 + 3
4x = 8
x = 8:4
x = 2
Đề 2
Bài 1
a) \(18.74+18.22+18.4\)
\(=18.\left(74+22+4\right)\)
\(=18.100\)
\(=1800\)
b) \(2016^0+4^4:4^2-5.2\)
\(=1+4^2-10\)
\(=17-10\)
\(=7\)
c) \(40:\left[11+\left(5-2\right)^2\right]\)
\(=40:\left[11+3^2\right]\)
\(=40:\left[11+9\right]\)
\(=40:20\)
\(=2\)
Bài 2
a) \(5.\left(x-13\right)=20\)
\(x-13=20:5\)
\(x-13=4\)
\(x=4+13\)
\(x=17\)
b) \(26-3.\left(x+4\right)=5\)
\(3.\left(x+4\right)=26-5\)
\(3.\left(x+4\right)=21\)
\(x+4=21:3\)
\(x+4=7\)
\(x=7-4\)
\(x=3\)
c) \(12.x-5^4:5^2=35\)
\(12.x-25=35\)
\(12.x=35+25\)
\(12.x=60\)
\(x=60:12\)
\(x=5\)
Bài 3
từ trang 1 đến trang 9 cần số chữ số là : (9-1)+1 *1=9 (chữ số)
từ trang 10 đến trang 99 cần số chữ số là : (99-10)+1 *2 =180 (chữ số)
từ trang 100 đến trang 164 cần số chữ số là : (164-100)+1*3=195 (chữ số)
cân tất cả số chữ số để đánh số trang quyển sách dày 164 trang la : 9+180+195=384 (chữ số)
Đ/S:384 chữ số
Bài 4: 2 + 4 + 6 + ... + 50
Dãy trên có số số hạng là
\(\left(50-2\right):2+1=15\)(số hạng)
Dãy trên nhận giá trị
\(\left(50+2\right)\times15:2=390\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{4}+\dfrac{2}{5}=\dfrac{3}{10}x-\dfrac{1}{4}x\)
\(\Rightarrow\dfrac{33}{20}=\dfrac{11}{20}x\)
\(\Rightarrow x=\dfrac{33}{20}\div\dfrac{11}{20}\)
\(\Rightarrow x=3\)
\(1\dfrac{1}{4}-x\dfrac{1}{4}=x\cdot30\%\cdot\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5}{4}-x\dfrac{1}{4}=x\cdot\dfrac{3}{10}-\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)
\(\Leftrightarrow25-5x=6x-8\)
\(\Leftrightarrow-5x-6x=-8-25\)
\(\Leftrightarrow-11x=-33\)
\(\Leftrightarrow x=3\)
Vậy x = 3
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
Trả lời:
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2005}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2006}\)
\(\Rightarrow5x+6=2006\)
\(\Rightarrow5x=2000\)
\(\Rightarrow x=400\)
Vậy x = 400
Trả lời:
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right)=\frac{5}{8}\)\(\frac{5}{8}\)
Đặt \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\), ta được : \(\frac{x}{2008}-A=\frac{5}{8}\) (*)
\(\Rightarrow A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(\Rightarrow A=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(\Rightarrow A=2\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Thay A vào (*) , ta có:
\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}=1\)
\(\Rightarrow x=2008\)
Vậy x = 2008
a) \(P=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2\)
\(=2^{100}-\left(2+2^2+2^3+...+2^{99}\right)\)
\(A=2+2^2+2^3+...+2^{99}\)
\(2A=2^2+2^3+...+2^{100}\)
\(2A-A=\left(2^2+2^3+...+2^{100}\right)-\left(2+2^2+2^3+...+2^{99}\right)\)
\(A=2^{100}-2\)
\(P=2^{100}-\left(2^{100}-2\right)=2\)
Ta có:
\(\overline{abc}=100.a+10.b+c=n^2-1\) (1)
\(\overline{cba}=100.c+b.10+a=n^2-4n+4\) (2)
Lấy (1) trừ (2) ta được:
\(99\left(a-c\right)=4n-5\)
\(\Rightarrow4n-5⋮99\)
Vì \(100\le\overline{abc}\le999\) nên:
\(100\le n^2-1\le999\)
\(\Rightarrow101\le n^2\le1000\)
\(\Rightarrow11\le31\Rightarrow39\le4n-5\le119\)
Vì \(4n-5⋮99\Rightarrow4n-5=99\Rightarrow n=26\Rightarrow\overline{abc}=675\)
Vậy \(\overline{abc}=675\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{4.5}+\dfrac{1}{6.7}+...+\dfrac{1}{18.19}\)
\(< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{17.18}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{17}-\dfrac{1}{18}\)
\(=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{4}{9}=\dfrac{76}{171}< \dfrac{9}{19}=\dfrac{81}{171}\)
\(\Rightarrow A< \dfrac{9}{19}\)