K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

19 tháng 6 2017

có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)

\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)

\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).

tương tự và cộng lại ta có ngay đpcm.

Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0

23 tháng 8 2021

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

23 tháng 8 2021

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

19 tháng 11 2023

Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn

14 tháng 12 2017

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

2 tháng 1 2021

mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không

 

11 tháng 6 2018

Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2ab

Dấu bằng xảy ra khi và chỉ khi a = b

rồi với 3 số thực a, b, c không âm: a+b+c3abc3

Dấu bằng xảy ra khi và chỉ khi a = b = c

rồi với 4 số thực a, b, c, d không âm: a+b+c+d4abcd4

Dấu bằng xảy ra khi và chỉ khi a = b = c = d

Với n số thức không âm x1,x2,x3,xnx1+x2+x3++xnnx1x2x3xnn

Dấu bằng xảy ra khi và chỉ khi x1=x2=x3==xn