Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
giá trị lớn nhất là 4 tin mình đi, mình làm rồi, chúc bạn thành công
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{2x}{2.3}=\frac{5y}{5.2}=\frac{2x}{6}=\frac{5y}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{5y}{10}=\frac{2x+5y}{6+10}\)\(=\frac{32}{16}=2\)
\(\frac{2x}{6}=2\Rightarrow2x=12\Rightarrow x=6\)
\(\frac{5y}{10}=2\Rightarrow5y=20\Rightarrow y=4\)
Vậy ..
ta có: x/3 =y/2 => 2x/6 = 5y/10
áp dụng tính chất dãy tỉ số bằng nhau ta có:
2x/6 = 5y/10 = 2x + 5y/ 6 + 10 = 32/16 = 2
=> x = 3 . 2 = 6 ; y = 2 . 2 = 4
vậy ( x , y ) = ( 6 ; 4 )