Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x/3=y/2 = x/12 = y /8
y/4=z/5 = y/8 = z/10 ( mình biến đổi sao cho y có mẫu chung là 8 ý bạn )
=> x/12=y/8=z/10 = -x-y+z/ -12-8+10
= -10/-10 =1
=> x = 1.12=12
y=1.8=8
z=1.10=10
CÁC BN GIẢI GIÚP MK BÀI NÀY VỚI
TÌM X, Y , Z
\(\frac{X}{Y+Z+1}=\frac{Y}{X+Z+2}=\frac{Z}{X+Y-3}=X+Y+Z\)
+)Xét x+y+z khác 0
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>x+y+z=1/2
\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+2\\2z=x+y-3\end{cases}\Rightarrow\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}\Rightarrow}\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+2\\3z=\frac{1}{2}-3\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}}\)
+)Xét x+y+z=0
=>x/y+z+1=y/x+z+2=z/x+y-3=0
=>x=y=z=0
8:50 gửi--> 9:30 đi
=> bạn phải nhắn tin may ra có kết quả mong đợi
à nhầm ở dòng 3 cáii\(\frac{y-x}{x-y}=k\) chứ ko phải như trên đâu nha
<=>\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y+y+z+x+z}{z+x+y}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
Ta có :
\(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
\(\Rightarrow\begin{cases}x=12\\y=8\\z=10\end{cases}\)
\(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\)
\(\Leftrightarrow\)\(\frac{x}{6}=\frac{y}{4};\frac{z}{5}=\frac{y}{4}\)
\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
=>\(\begin{cases}x=12\\y=8\\z=10\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
Theo tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+y+2+x+y-3+1}{x+y+z+x+y+z}\)
=\(\frac{\left(x+y+z\right)+\left(x+y+y1+2-3\right)}{\left(x+y+z\right)+\left(x+y+z\right)}=\frac{\left(x+y+z\right)+\left(x+y+y+1\right)}{\left(x+y+z\right)+\left(x+y+z\right)}\)
=>x+y+y+1=x+y+z
=>y+1=z
Vậy đáp số cần tìm là x,y,z khác 0
x tùy ý
y tùy ý
z=y+1
Đề là gì ????