Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|2x^2-3x+4|-|2x-x^2-1|=0\)
\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)
Vậy ...
\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)
\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(TH1:3x^2-5x+5=0\)
Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)
\(TH2:x^2-x+3=0\)
Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)
Vậy pt vô nghiệm
1.
a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)
<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26
<=> 10 + 26 = 13x
<=> 13x = 36
<=> x = \(\frac{36}{13}\)
b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)
<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)
<=> x = \(\frac{1}{7}\)
c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)
<=> (37 - x) . 7 = 3.(x + 13)
<=> 119 - 7x = 3x + 39
<=> -7x - 3x = 39 - 119
<=> -10x = -80
<=> x = 8
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
<=> 7(x - 1) = 6(x + 5)
<=> 7x - 7 = 6x + 30
<=> 7x - 6x = 30 + 7
<=> x = 37
e)
2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)
<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)
<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)
Bài 2. đề sai
Bài 3.
a) 6,88 : x = \(\frac{12}{27}\)
<=> x = 6,88 : \(\frac{12}{27}\)
<=> x = 15,48
b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x
<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x
<=> \(\frac{5}{7}=13:2x\)
<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)
<=> x = 9,1
a: \(\Leftrightarrow x-2\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{3;1;21;-17\right\}\)
b: \(\Leftrightarrow2x+3\in\left\{1;-1;3;-3\right\}\)(vì x là số nguyên nên 2x+3 là số lẻ)
hay \(x\in\left\{-1;-2;0;-3\right\}\)
c: \(\Leftrightarrow x+1+4⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;-2;1;-3;3;-5\right\}\)
d: \(\Leftrightarrow x+1⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-3;-5;-1;-7\right\}\)
\(\frac{2x+3}{x-1}< x+1\left(x\ne1\right)\)
\(\Leftrightarrow\frac{2x+3}{x-1}-x-1< 0\)
\(\Leftrightarrow\frac{2x+3-x^2+1}{x-1}< 0\)
\(\Leftrightarrow\frac{-x^2+2x+4}{x-1}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+2x-4< 0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}-x^2+2x-4>0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1-\sqrt{5}\\x>1+\sqrt{5}\end{matrix}\right.\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}1-\sqrt{5}< x< 1+\sqrt{5}\\x< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>1+\sqrt{5}\\1-\sqrt{5}< x< 1\end{matrix}\right.\)
Vậy...........
\(\Delta'=\left(1-2m\right)^2-5m^2+4m-2\)
\(\Delta'=1-4m+4m^2-5m^2+4m-2\)
\(\Delta'=-m^2-1\le-1\)
Vậy phương trình luôn vô nghiệm do \(\Delta'< 0\forall m\)