K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 5 2022
Câu 1: B
Câu 2: C
Câu 3: A
Câu 4: D
Câu 5: B
Câu 6: D
Câu 7: A
KV
16 tháng 3 2023
2x² + 5x - 12 = 0
∆ = 25 + 4.2.12 = 121
x₁ = (-5 + 11)/4 = 3/2
x₂ = (-5 - 11)/4 = -4
Bảng xét dấu
x -∞ -4 3/2 +∞
2x²+5x-12 + - +
Các nghiệm nguyên của bpt là: -4; -3; -2; -1; 0; 1
Vậy bpt đã cho có 6 nghiệm nguyên
27 tháng 7 2023
2: -x^2+x+6>=0
=>x^2-x-6<=0
=>(x-3)(x+2)<=0
=>-2<=x<=3
3:
góc C=180-60-45=75 độ
Xét ΔABC có AB/sinC=BC/sinA=AC/sinB
=>AB/sin75=BC/sin60=8/sin45
=>\(AB=4+4\sqrt{3}\left(cm\right);BC=4\sqrt{6}\left(cm\right)\)
\(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}=\overrightarrow{0}\Leftrightarrow\overrightarrow{CG}=-\overrightarrow{AG}-\overrightarrow{BG}\)
\(\Rightarrow\overrightarrow{AB}+\overrightarrow{CG}=\overrightarrow{AB}-\overrightarrow{AG}-\overrightarrow{BG}=\overrightarrow{GB}-\overrightarrow{BG}=2\overrightarrow{GB}\)
\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=2GB\)
Gọi BN là đường cao của tam giác ABC
Theo Pythagoras:\(BN^2=BC^2-\left(\dfrac{AB}{2}\right)^2=4a^2-a^2=3a^2\Rightarrow BN=\sqrt{3}a\)
Vì BN là đường cao trong tam giác đều nên cũng là đường trong tuyến trong tam giác đều \(\Rightarrow GB=\dfrac{2}{3}BN=\dfrac{2}{3}\cdot\sqrt{3}a=\dfrac{2\sqrt{3}}{3}a\)
\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\dfrac{4\sqrt{3}}{3}a\)