Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác vuông NCA và tam giác vuông MAC có
AC là cạnh huyền chung
góc A = góc C ( tam giác ABC cân tại B )
do đó tam giác NCA = tam giác MAC (cạnh huyền - góc nhọn )
suy ra NA = MC ( 2 cạnh tương ứng )
ta có BA = BC ( tam giác cân )
NA = MC (cmt)
suy ra BA-NA=BC-MC ( vì N nằm giữa B và A , M nằm giữa B và C )
hay BN = BM
xét \(\Delta BNO\)và \(\Delta BMO\)có
BO là cạnh huyền chung
BN = BM (cmt)
do đó \(\Delta BNO=\Delta BMO\)( cạnh huyền - cạnh góc vuông )
suy ra \(\widehat{NBO}=\widehat{MBO}\)( 2 góc tương ứng )
mà tia BO nằm giữa 2 tia BA và BC
suy ra tia Bo là phân giác góc ABC
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
xét tam giác acm và tam giác abm có:
AC=AB(GT)
AM:CẠNH CHUNG
CM=MB(GT)
SUY RA TAM GIÁC ACM = ABM(C.C.C)
SUY RA GÓC M1=M2
MÀ M1=M2=180 ĐỘ(2 GÓC KỀ BÙ)
SUY RA AM VUÔNG GÓC VỚI CB
Tam giác ABC cân tại A nên trung truyến cũng là đường cao
=> AM vuông góc với BC
Mà tam giác ABC vuông cân tại A nên góc ACB = 45 độ
=> góc MAC = 90 độ - góc MCA = 90 độ - 45 độ = 45 độ
=> tam giác AMC cân tại M
=> AM = MC = 1/2 BC
Tk mk nha
nguyễn anh quân ơi
mình chép sai đề bài nha là tam giác vuông tại A nhé