Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (d) cắt (d') tại một điểm nằm trên trục tung thì:
m - 4 = 2
⇔ m = 6
Vậy m = 6 thì (d) và (d') cắt nhau tại một điểm trên trục tung
a )
Đồ thị parapol P đi qua điểm M khi a là nghiệm của phương trình :
\(2=a.2^2\)
\(\Leftrightarrow4a=2\)
\(\Leftrightarrow a=\dfrac{1}{2}\)
a) Với m=2 thì hàm số đã cho trở thành: \(y=2x+2\)
-Nếu \(x=0\Rightarrow y=2\) . Ta có điểm \(\left(0;2\right)\in Oy\)
- Nếu \(y=0\Rightarrow x=-1\). Ta có điểm \(\left(-1;0\right)\in Ox\)
Đường thẳng đi qua 2 điểm \(\left(0;2\right);\left(-1;0\right)\) là đồ thị của hàm số \(y=2x+2\)
O 2 1 y=2x+2
b) Vì: \(\left(1\right)\cap Ox=\left\{A\right\}\) . Nên:
\(mx+2=0\Leftrightarrow x=\frac{-2}{m}\)
=> \(OA=\left|-\frac{2}{m}\right|\)
Vì: \(\left(1\right)\cap Oy=\left\{B\right\}\). Nên: \(y=2\)
=> \(OB=2\)
Vì: (1) cắt các trục tọa độ 1 tam giác cân nên:
\(OA=OB\)
\(\Leftrightarrow\left|-\frac{2}{m}\right|=2\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-\frac{2}{m}=2\\-\frac{2}{m}=-2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}m=-1\\m=1\end{array}\right.\)
Gọi A,B lần lượt là giao của (d) với trục Ox, Oy
=>A(-2m/m-1;0); B(0;2m)
=>OA=|2m|/|m-1|; OB=|2m|
Theo đề, ta có: 1/2*OA*OB=1
=>4m^2/|m-1|=2
TH1: m>1
Ptsẽ là 4m^2=2m-2
=>4m^2-2m+2=0(loại)
TH2: m<1
Pt sẽ là 4m^2=-2m+2
=>4m^2+2m-2=0
=>2m^2+m-1=0
=>2m^2+2m-m-1=0
=>(m+1)(2m-1)=0
=>m=-1 hoặc m=1/2
a) xa =-1 =>ya =1/2.(-1)^2 =1/2=> A(-1;1/2)
xb=2 =>yb =1/2.2^2 =2=> B(2;2)
\(\left\{{}\begin{matrix}\dfrac{1}{2}=-m+n\\2=2m+n\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2m+2n=1\\2m+n=2\end{matrix}\right.\)=> n=1; m =1/2
b) \(AB=\sqrt{\left(x_b-x_a\right)^2+\left(y_b-y_a\right)^2}=\sqrt{3^2+\left(\dfrac{3}{2}\right)^2}=\sqrt{\dfrac{3^2\left(4^2+1\right)}{4^2}}=\dfrac{3\sqrt{17}}{4}\)\(S\Delta_{AOB}=\dfrac{1}{2}\left(\left|x_a\right|+\left|x_b\right|\right)\left(y_b-y_a\right)=\dfrac{1}{2}\left(1+2\right).\left(2-\dfrac{1}{2}\right)=\dfrac{1}{2}.3.\dfrac{3}{2}=\left(\dfrac{3}{2}\right)^2\)\(S_{\Delta AOC}=\dfrac{1}{2}OH.AB\)
\(OH=2.\dfrac{\dfrac{9}{4}}{\dfrac{3\sqrt{17}}{4}}=\dfrac{6}{\sqrt{17}}=\dfrac{6\sqrt{17}}{17}\)