K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

     \(\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)

\(=1+1+...+1+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)(có 49 số 1)

\(=\left(1+\frac{48}{2}\right)+\left(1+\frac{47}{3}\right)+...+\left(1+\frac{2}{48}\right)+\left(1+\frac{1}{49}\right)+1\)

\(=\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}+\frac{50}{50}\)

\(=50\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)\)

Chúc bạn học tốt.

4 tháng 8 2016

A = 1 + 5 + 52 + 53 + 53 + ...+ 549 + 550

5A = 5(50+51+52+53+...+549+550)

5A=51+52+53+54+...+550+551

5A-A=(51+52+53+54+...+550+551)-(50 + 51 + 52 + 53 + 53 + ...+ 549 + 550)

4A=551-1

A=(551-1):4

4 tháng 8 2016

5A = 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^50 + 5^51

=> 4A = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 +...+ 5^49 + 5^50 )

=> 4A = 5^51 - 1

=> A = \(\frac{5^{51}-1}{4}\) 

9 tháng 4 2017

Bài 1:

Ta có:

\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\)

\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}\)

\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+...+\left(1+\dfrac{48}{2}\right)+1}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)

Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)

Bài 2:

Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{9}+\dfrac{1}{10}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}\right)\)

Nhận xét:

\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\)

\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{2}\)

28 tháng 7 2016

a. 5^4.3-4.(15^4-1)

=5^4.3-4.15^4+4

=4-15^4

=-50621

a: \(=625\cdot3-4\cdot\left(15^4-1\right)\)

\(=1875-4\cdot50625+4\)

\(=1879-202500=-200621\)

b: =50+49+48+47+...+2+1

Số số hạng là 50-1+1=50(số)

Tổng của dãy số là:

\(\dfrac{\left(1+50\right)\cdot50}{2}=51\cdot25=1275\)