K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-1-\frac{1}{2}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

3 tháng 8 2017

Ta có :

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

Ta có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)

\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)

1 tháng 3 2017

Bài này còn cần bài giải không b

30 tháng 3 2017

lấy máy tính bấm đi bạn

3 tháng 8 2017

=\(\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)+\(\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\sqrt{2}-\sqrt{3}}\)+.....+\(\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right).\left(\sqrt{99}-\sqrt{100}\right)}\)

=\(\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{99}\)

=\(-1+\sqrt{100}\)

=9

25 tháng 7 2017

=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101

=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)

=1.1/101

=1/101

=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101

=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)

=1.1/101

=1/101

29 tháng 9 2019

\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left(51^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)....\left(52^4+\frac{1}{4}\right)}\)

\(=\frac{\left(1+1+\frac{1}{2}\right)\left(1-1+\frac{1}{2}\right)....\left(11^2-11+\frac{1}{2}\right)}{\left(2+2^2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)....\left(12^2-12+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)....\left(11.12+\frac{1}{2}\right)}{\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(12.13+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{12.13+\frac{1}{2}}\)

\(=\frac{1}{313}\)

Chúc bạn học tốt !!!

22 tháng 4 2021

câu a thì quy đồng bỏ mẫu là ra nha