Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có: \(c.a=-m^2+m-2=-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}<\)\(0\) với mọi số thực m.
=> pt luôn có 2 nghiệm trái dấu
b/
Theo Viet: \(x_1+x_2=m-1;\text{ }x_1.x_2=-m^2+m-2\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5\)
\(=3\left(m^2-\frac{4}{3}m\right)+5=3\left(m^2-2.m.\frac{2}{3}+\frac{4}{9}\right)+5-3.\frac{4}{9}\)
\(=3\left(m-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)
Dấu "=" xảy ra khi m = 2/3.
Vậy GTNN của x2+y2 là 11/3.
c/\(x_1=2x_2\)
\(m-1=x_1+x_2=2x_2+x_2=3x_2\Rightarrow x_2=\frac{m-1}{3}\)
\(\Rightarrow x_1=2x_2=\frac{2}{3}\left(m-1\right)\)
\(x_1.x_2=-m^2+m-2\Rightarrow\frac{1}{3}\left(m-1\right).\frac{2}{3}\left(m-1\right)=-m^2+m-2\)
\(\Leftrightarrow2\left(m-1\right)^2=9\left[-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}\right]\)
Pt trên vô nghiệm do \(VT\ge0>VP\)
Vậy không tồn tại m để......
Lưu ý câu c: ở trên là form làm bài dạng này chung, tuy nhiên, ở bài này ta thấy ngay không tồn tại m.
Do x1 và x2 trái dấu với mọi m
Nên x1 ≠ x2 với mọi m.
Cho phương trình x2 – mx + m2 -5 =0 (1) với m là tham số
1.Tìm m để phương trình có hai nghiệm trái dấu.
2. Với những giá trị của m mà phương trình có nghiệm. Hãy tìm giá trị lớn nhất và nhỏ nhất trong tất cả các nghiệm đó.
\(a)\) Khi m=1 pt \(\Leftrightarrow\)\(x^2-2x=0\)\(\Leftrightarrow\)\(x\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\) khi m=1
\(b)\)\(\Delta'=\left(-m\right)^2-\left(2m-2\right)=m^2-2m+2=\left(m-1\right)^2+1>0\)
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
Ta có : \(x_1^2+x_2^2=12\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=12\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-2\end{cases}}\)
(*) \(\Leftrightarrow\)\(\left(2m\right)^2-2\left(2m-2\right)=12\)
\(\Leftrightarrow\)\(4m^2-4m-8=0\)
\(\Leftrightarrow\)\(m^2-m-2=0\) (2)
Có \(\Delta=\left(-1\right)^2-4.\left(-2\right)=9>0\)
pt (2) có hai nghiệm phân biệt \(\hept{\begin{cases}m_1=\frac{-\left(-1\right)+\sqrt{9}}{2}\\m_2=\frac{-\left(-1\right)-\sqrt{9}}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}m_1=2\\m_2=-1\end{cases}}}\)
Vậy để \(x_1^2+x_2^2=12\) thì \(\orbr{\begin{cases}m=-1\\m=2\end{cases}}\)
\(c)\) Ta có : \(A=\frac{6\left(x_1+x_2\right)}{x_1^2+x_2^2+4\left(x_1+x_2\right)}=\frac{6\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2+4\left(x_1+x_2\right)-2x_1x_2}=\frac{6.2m}{\left(2m\right)^2+4.2m-2\left(2m-2\right)}\)
\(A=\frac{12m}{4m^2+4m+4}=\frac{3m}{m^2+m+1}\)\(\Leftrightarrow\)\(Am^2+\left(A-3\right)m+A=0\)
+) Nếu \(A=0\) thì \(m=0\)
+) Nếu \(A\ne0\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(A-3\right)^2-4A.A\ge0\)
\(\Leftrightarrow\)\(-3A^2-6A+9\ge0\)
\(\Leftrightarrow\)\(A^2+2A-3\le0\)
\(\Leftrightarrow\)\(\left(A+1\right)^2\le4\)
\(\Leftrightarrow\)\(-3\le A\le1\)
\(\Rightarrow\)\(A\le1\) dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3m}{m^2+m+1}=1\)\(\Leftrightarrow\)\(m=1\)
Vậy GTLN của \(A=1\) khi \(m=1\)
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
1B
2B
3A
4D