\(\left(\frac{1}{cos2x}+1\right)tanx=tan2x\)
c2 : chứng minh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 6 2020

\(\left(\frac{1}{cos2x}+1\right)tanx=\left(\frac{cos2x+1}{cos2x}\right).\frac{sinx}{cosx}=\frac{2cos^2x}{cos2x}.\frac{sinx}{cosx}\)

\(=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)

\(\frac{cos7a+cosa+cos5a+cos3a}{sin7a+sina+sin5a+sin3a}=\frac{2cos4a.cos3a+2cos4a.cosa}{2sin4a.cos3a+2sin4a.cosa}\)

\(=\frac{cos4a\left(2cos3a+2cosa\right)}{sin4a\left(2cos3a+2cosa\right)}=\frac{cos4a}{sin4a}=cot4a\)

15 tháng 6 2020

Đề sai rồi bạn ơi, mình không biết các loại máy khác bấm như nào nhma mình dùng fx 580 thì mode B xét đúng/sai thì máy cho kết quả là biểu thức này sai nha :v

NV
1 tháng 5 2019

Đơn giản vì đề bài không đúng, bạn thay thử 1 giá trị góc a vào và bấm máy sẽ thấy 2 vế ko hề bằng nhau

27 tháng 8 2021

có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)

NV
8 tháng 6 2020

\(\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(cos^2\left(a-\frac{\pi}{4}\right)-sin^2\left(a-\frac{\pi}{4}\right)=cos\left(2a-\frac{\pi}{2}\right)\)

\(=cos\left(\frac{\pi}{2}-2a\right)=sin2a\)

NV
25 tháng 5 2020

\(A=2sin2x.cos2x.cos4x=sin4x.cos4x=\frac{1}{2}sin8x\)

\(B=sin^4x+cos^6x-6sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x\)

\(=1-2\left(2sinx.cosx\right)^2=1-2sin^22x=cos4x\)

\(C=\frac{cos2a+1-2cos^22a}{2sin2a.cos2a+sin2a}=\frac{\left(1-cos2a\right)\left(2cos2a+1\right)}{sin2a\left(2cos2a+1\right)}=\frac{1-cos2a}{sin2a}\)

\(=\frac{1-\left(1-2sin^2a\right)}{2sina.cosa}=\frac{2sin^2a}{2sina.cosa}=\frac{sina}{cosa}=tana\)

\(D=\frac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}=\frac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\frac{cos3a}{sin3a}=cot3a\)

\(E=\frac{1}{2}-\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)-\frac{1}{2}+\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)\)

\(=\frac{1}{2}\left[cos\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\right]=-sin\frac{\pi}{4}.sinx=-\frac{\sqrt{2}}{2}sinx\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

NV
16 tháng 7 2021

a.

\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cosa+sin3a}{2cos3a.cosa+cos3a}=\dfrac{sin3a\left(2cosa+1\right)}{cos3a\left(2cosa+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)

b.

\(\dfrac{1+cosa}{1-cosa}.\dfrac{sin^2\dfrac{a}{2}}{cos^2\dfrac{a}{1}}-cos^2a=\dfrac{1+cosa}{1-cosa}.\dfrac{\dfrac{1-cosa}{2}}{\dfrac{1+cosa}{2}}-cos^2a\)

\(=\dfrac{1+cosa}{1-cosa}.\dfrac{1-cosa}{1+cosa}-cos^2a=1-cos^2a=sin^2a\)

NV
29 tháng 5 2020

\(sinx\left(1+cos2x\right)=sinx\left(1+2cos^2x-1\right)=2sinx.cosx.cosx=sin2x.cosx\)

\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=\frac{-cos2x}{\frac{1}{2}sin2x}=-\frac{2}{tan2x}\)

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}\left(\frac{1+cosx}{cosx}\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}.\frac{2cos^2\frac{x}{2}}{cosx}=\frac{2sin\frac{x}{2}.cos\frac{x}{2}}{cosx}=\frac{sinx}{cosx}=tanx\)

NV
7 tháng 5 2019

\(2sin\left(\frac{\pi}{4}+a\right)sin\left(\frac{\pi}{4}-a\right)=cos2a-cos\left(\frac{\pi}{2}\right)=cos2a\)

\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=-\frac{2\left(cos^2x-sin^2x\right)}{2sinx.cosx}=\frac{2cos2x}{sin2x}=-2cot2x=-\frac{2}{tan2x}\)