Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d là \(ƯCLN\left(3n+2,2n+1\right)\)
Ta có : 2n+ 1 chia hết cho d ,3n+2 chia hết cho d
\(3\left(2n+1\right)-2\left(3n+2\right)\)chia hết cho
1 chia hết cho d
\(d=1\)
Vậy \(3n+2;2n+1\)là số nguyên tố cùng nhau với mọi số tự nhiên n
TL
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
HỌC TỐT Ạ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N )
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17
![](https://rs.olm.vn/images/avt/0.png?1311)
ta lập biểu thức n+a.b+2=a.b.c.d.e.f
2+1=3
(a.b+2.c.d)=a.b.c.d.s.g
2=a.c.b
n.2= 3
a.b.f.g.g.g.s.d.g.sdx.f.đ
ta lập biểu thức với a/b. á/c+s= adcb
3-2=1 suy ra ta có
n=1/n=4
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(2n+5⋮n-1\)
\(2\left(n-1\right)+7⋮n-1\)
\(7⋮n-1\)hay \(n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
b, Công thức tổng quát : \(A\left(x\right).B\left(x\right)=0\Rightarrow\orbr{\begin{cases}A\left(x\right)=0\\B\left(x\right)=0\end{cases}}\)
\(\left(2n+3\right)\left(n-4\right)=0\Leftrightarrow\orbr{\begin{cases}n=-\frac{3}{2}\\n=4\end{cases}}\)
c, \(\left|x-3\right|< 3\Leftrightarrow-3< x-3< 3\)
\(\Leftrightarrow-3+3< x< 3+3\Leftrightarrow0< x< 6\)
Vậy \(x\in\left\{1;2;3;4;5;\right\}\)