\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{11.12.13}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Ta có công thức:

\(\frac{a}{c.\left[c+1\right].\left[c+2\right]}=\frac{a}{2}\left[\frac{1}{c.\left[c+1\right]}-\frac{1}{\left[c+1\right].\left[c+2\right]}\right]\)

vậy

\(C=\frac{1}{2}\left[\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{11.12}-\frac{1}{12.13}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1.2}-\frac{1}{12.13}\right]\)

\(C=\frac{1}{2}.\frac{77}{156}=\frac{77}{312}\)

mình làm đầu tiên đó, 

Chúc bạn học tốt !

22 tháng 3 2017

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{11.12.13}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{11.12}-\frac{1}{12.13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{156}\right)\)

\(=\frac{1}{2}\cdot\frac{77}{156}\)

\(=\frac{77}{312}\)

Đặt A=\(\frac{-1}{2\cdot3\cdot4}\)+\(\frac{-1}{3\cdot4\cdot5}\)+...+\(\frac{-1}{12\cdot13\cdot14}\)

        A=(-1)*(\(\frac{1}{2\cdot3\cdot4}\)+\(\frac{1}{3\cdot4\cdot5}\)+...+\(\frac{1}{12\cdot13\cdot14}\))

        A=\(\frac{-1}{2}\)*(\(\frac{2}{2\cdot3\cdot4}\)+\(\frac{2}{3\cdot4\cdot5}\)+...+\(\frac{2}{12\cdot13\cdot14}\))

        A=\(\frac{-1}{2}\)*(\(\frac{1}{2\cdot3}\)-\(\frac{1}{3\cdot4}\)+\(\frac{1}{3\cdot4}\)-\(\frac{1}{4\cdot5}\)+...+\(\frac{1}{12\cdot13}\)-\(\frac{1}{13\cdot14}\))

       A=\(\frac{-1}{2}\)*(\(\frac{1}{6}\)-\(\frac{1}{182}\))

       A=\(\frac{-1}{2}\)*\(\frac{44}{273}\)

       A=\(\frac{-22}{273}\)

9 tháng 5 2016

\(\frac{-1}{2.3.4}+\frac{-1}{3.4.5}+\frac{-1}{4.5.6}+...+\frac{-1}{11.12.13}+\frac{-1}{12.13.14}\)

\(=-\frac{1}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+\frac{2}{4.5.6}+...+\frac{2}{11.12.13}+\frac{2}{12.13.14}\right)\)

\(=-\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}-\frac{1}{5.6}+...+\frac{1}{11.12}-\frac{1}{12.13}+\frac{1}{12.13}-\frac{1}{13.14}\right)\)

\(=-\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{13.14}\right)=-\frac{1}{2}.\frac{44}{273}=-\frac{22}{273}\)

18 tháng 4 2019

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(C=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{999\cdot1000}\right]\)

Tính nốt :v

Ta có

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(\Rightarrow2C=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{2}-\frac{1}{999000}\)

\(=\frac{499500}{999000}-\frac{1}{999000}\)

\(=\frac{499499}{999000}\)

\(\Rightarrow C=\frac{499499}{1998000}\)

đúng nha bạn nhớ k mik

11 tháng 4 2019

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

15 tháng 5 2019

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)

Đến đây tự tính được rồi:v

15 tháng 5 2019

   Đặt tổng trên là A

Ta có:

\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)

\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)

\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)

\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)

        *Làm tiếp*

                                          \(#Louis\)

17 tháng 5 2016

Mình không chép đề bài nhé :
Gọi biểu thức là A :
Ta có : 2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
=\(\frac{1}{1.2}-\frac{1}{49.50}\)( Rút gọn đi ta được cái này )
=1/2 - 1/2450
Vậy A = (1/2 - 1/2450):2
 

11 tháng 4 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}.\left(\frac{741}{1482}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}.\frac{740}{1482}\)

\(=\frac{185}{741}\)

Chúc bạn học tốt !!! 

11 tháng 4 2018

Đặt 1/1.2.3 + 1/2.3.4 + ...+ 1/37.38.39 = A

Ta có : 2A = 2/1.2.3 + 2/2.3.4 +...+ 2/37.38.39

         2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ...+ 1/37.38 - 1/38.39

         2A = 1/1.2 - 1/38.39

         2A = 740/1482 = 370/741

           A= 370/741 . 1/2 =........

19 tháng 3 2017

= 1/2.(2/1.2.3+2/2.3.4+.....+2/50.51.52

=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+....+1/50.51-1/51.52

=1/2.(1/1.2-1/51.52)

=1/2.(1/2-1/2652)

=1/2.1325/2652

=1325/5304

19 tháng 3 2017

A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/50.51-1/51.52

A=1/1.2-1/51.52

phần còn lại tự giải nhé

17 tháng 4 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2014.2015}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)\)

\(S=\frac{1}{2}.\left(\frac{2029105}{4058210}-\frac{1}{4058210}\right)\)

\(S=\frac{1}{2}.\frac{2029104}{4058210}\)

\(S=\frac{1014552}{4058210}\)

Chúc bạn học tốt !!! 

17 tháng 4 2018

Công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

9 tháng 4 2018

* Công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

9 tháng 4 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{20.21.22}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{20.21}-\frac{1}{21.22}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{21.22}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{462}\right)\)

\(=\frac{1}{2}.\left(\frac{231}{462}-\frac{1}{462}\right)\)

\(=\frac{1}{2}.\frac{230}{462}\)

\(=\frac{115}{462}\)

Chúc bạn học tốt !!!