Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)
c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)
\(=5\left(1-3x\right)\left(x+3y\right)\)
f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)
\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)
1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)
\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)
\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)
\(=3x^2+12y^2-8xy-5x+10y-7\)
\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)
\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)
\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)
\(=8y^2+12y+5\)
\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)
\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)
\(c,=\left(x-y\right)\left(10x^2-15x^3\right)=5x^2\left(2-3x\right)\left(x-y\right)\\ d,=\left(2x-3y\right)\left(5x+15\right)=5\left(x+3\right)\left(2x-3y\right)\)
c: \(10x^2\left(x-y\right)+15x^3\left(y-x\right)\)
\(=10x^2\left(x-y\right)-15x^3\left(x-y\right)\)
\(=5x^2\left(x-y\right)\left(2-3x\right)\)
d: \(5x\left(2x-3y\right)-15\left(3y-2x\right)\)
\(=5x\left(2x-3y\right)+15\left(2x-3y\right)\)
\(=5\left(2x-3y\right)\left(x+3\right)\)
Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.
Bài 2:
a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)
\(=4x^2+20x+25\)
b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)
\(=9x^2+24x+16\)
c/\(\left(3x+5y+\frac{1}{2}\right)^2\)
Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)
\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)
Bài 3:
a/ A= x2+10x+30
A= x2+2.5x+25+5
A= x2+2.5.x+52+5
A=(x+5)2+5
Ta có (x+5)2 luôn luôn > hoặc = 0
=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)
=> A luôn dương.
b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)
\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)
(Tương tự như câu A)
Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0
=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)
=> B luôn dương.
c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)
(Chứng minh tương tự câu a, b)
Chúc bạn học tốt!!
mk giúp bạn bài 3 còn bài 1, 2 tự làm nha
a , A = x2 + 10x +30
= (x2 + 2 . 5 . x +52 ) +5
= (x+5)2 + 5
Vì (x+5)2 >= 0 (luôn đúng)
=> (x+5)2 + 5 luôn luôn dương
a) Ta có : x - 2y = 0
=> x = 2y
Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5
= 8y2 - 2y2 - 6y2 - 4y3 + 4y3 + 5
= 5
Vậy giá trị của A khi x - 2y = 0 là 5
b)Thay 11 = x - y vào biểu thức B ta có
\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)
Vậy giá trị của B khi x - y = 11 là 0
c: \(10x^2\left(x-y\right)+15x^3\left(y-x\right)\)
\(=10x^2\left(x-y\right)-15x^3\left(x-y\right)\)
\(=5x^2\left(2-3x\right)\left(x-y\right)\)
d: \(5x\left(2x-3y\right)-15\left(3y-2x\right)\)
\(=5x\left(2x-3y\right)+15\left(2x-3y\right)\)
\(=5\left(x+3\right)\left(2x-3y\right)\)