K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`a,`

`x^2 + 2x + 1 = 9`

`=> x^2 + 2x + 1 - 9 = 0`

`=> x^2 + 2x - 8 = 0`

`=> x^2 + 4x - 2x - 8 = 0`

`=> (x^2 + 4x) - (2x + 8) = 0`

`=> x(x + 4) - 2(x + 4) = 0`

`=> (x-2)(x+4) = 0`

`=>`\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy, `x \in {2; 4}`

`b,`

`x^2 - 1 = 15`

`=> x^2 = 15 + 1`

`=> x^2 = 16`

`=> x^2 = (+-4)^2`

`=> x = +-4`

Vậy, `x \in {4; -4}`

`c)`

`19 - 2x^2 = 1`

`=> 2x^2 = 19 - 1`

`=> 2x^2 = 18`

`=> x^2 = 18 \div 2`

`=> x^2 = 9`

`=> x^2 = (+-3)^2`

`=> x = +-3`

Vậy, `x \in {3; -3}.`

10 tháng 7 2023

`a,x^2+2x+1=9`

`<=>x^2+2.x.1+1^2=9`

`<=>(x+1)^2=3^2`

`<=>(x+1)^2=+-3`

\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

`b, x^2-4x-21=0`

`<=>x^2+3x-7x-21=0`

`<=>x(x+3) - 7(x+3)=0`

`<=>(x+3)(x-7)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

`c,x^2+10x-24=0`

`<=>x^2+12x-2x-24=0`

`<=>x(x+12)-2(x+12)=0`

`<=>(x+12)(x-2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-12\\x=2\end{matrix}\right.\)

a: =>(x+1)^2=9

=>(x+1+3)(x+1-3)=0

=>(x+4)(x-2)=0

=>x=2 hoặc x=-4

b: =>x^2-7x+3x-21=0

=>(x-7)(x+3)=0

=>x=7;x=-3

c: =>x^2+12x-2x-24=0

=>(x+12)(x-2)=0

=>x=2 hoặc x=-12

10 tháng 7 2023

a/

\(x^2=25\Leftrightarrow x=\pm5\)

b/

\(x^2-1=15\\\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

c/

\(19-2x^2=1\Leftrightarrow2x^2=18\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

`@` `\text {Ans}`

`\downarrow`

`a,`

`x^2 = 25`

`=> x^2 = (+-5)^2`

`=> x = +-5`

Vậy, `x \in {5; -5}`

`b,`

`x^2 - 1 = 15`

`=> x^2 = 15+1`

`=> x^2 = 16`

`=> x^2 = (+-4)^2`

`=> x = +-4`

Vậy, `x \in {4; -4}`

`c,`

`19 - 2x^2 = 1`

`=> 2x^2 = 19 - 1`

`=> 2x^2 = 18`

`=> x^2 = 18 \div 2`

`=> x^2 = 9`

`=> x^2 = (+-3)^2`

`=> x = +-3`

Vậy, `x \in {3; -3}.`

23 tháng 10 2018

a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left[2\left(x+2\right)\right]^2=9\)

\(\left[2x+1-2\left(x+2\right)\right]\left[2x+1+2\left(x+2\right)\right]=9\)

\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)

\(-3\left(4x+5\right)=9\)

\(4x+5=-3\)

\(4x=-8\)

\(x=-2\)

b) \(x^2-2x-15=0\)

\(x^2-5x+3x-15=0\)

\(x\left(x-5\right)+3\left(x-5\right)=0\)

\(\left(x-5\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

c) \(2x^2+3x-5=0\)

\(2x^2-2x+5x-5=0\)

\(2x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}}\)

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

a) \(\left(x+2\right)^2-9=0\)

\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)

\(=>\left(x-1\right).\left(x+5\right)=0\)

\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy x= 1 hoặc x= -5

b) \(x^2-2x+1=25\)

\(=>x^2-2.x.x+1^2=25\)

\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)

\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)

\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

Vậy x= 6 hoặc x= -4

c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)

\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)

\(=>4x\left(x-1\right)-4x^2+25-1=0\)

\(=>4x\left(x-1\right)-4x^2+24=0\)

\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)

..................... tắc ròi -.-"

d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)

\(=>x^3+27-x^3-3x=15\)

\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)

Vì \(3>0=>4-x=0=>x=4\)

Vậy x= 4

e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)

\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)

\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)

\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)

\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)

Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'

10 tháng 10 2020

Cảm ơn cậu nhiều nhé!

17 tháng 8 2021

Trả lời:

a, \(\left(3x+1\right)\left(x-3\right)-x\left(3x-14\right)=15\)

\(\Leftrightarrow3x^2-9x+x-3-3x^2+14x=15\)

\(\Leftrightarrow6x-3=15\)

\(\Leftrightarrow6x=18\)

\(\Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt.

b, \(\left(x-3\right)^2=9-x^2\)

\(\Leftrightarrow\left(x-3\right)^2-9+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-3+x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right).2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

Vậy x = 3; x = 0 là nghiệm của pt.

c, \(\left(2x-\frac{1}{2}\right)^2-\left(1-2x\right)^2=2\)

\(\Leftrightarrow4x^2-2x+\frac{1}{4}-\left(1-4x+4x^2\right)=2\)

\(\Leftrightarrow4x^2-2x+\frac{1}{4}-1+4x-4x^2=2\)

\(\Leftrightarrow2x-\frac{3}{4}=2\)

\(\Leftrightarrow2x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{8}\)

Vậy x = 11/8 là nghiệm của pt.

d, \(4x^2+4x-3=0\)

\(\Leftrightarrow4x^2-2x+6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy x = 1/2; x = - 3/2 là nghiệm của pt.

10 tháng 7 2018

\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)

\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)

\(12x^2-48-12x^2-36x-27\) \(=52\)

\(-36x-75=52\)

\(-36x=127\)

\(x=\frac{-127}{36}\)

\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)

\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)

\(4x^2+4x-1-4x^2+4+2x=5\)

\(6x+3=5\)

\(6x=2\)

\(x=3\)

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)

\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)

\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)

\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)

\(x^3-2-x^3-3x^2+9x+27=15\)

\(-3x^2+9x+25=15\)

\(-3x^2+9x+10=0\)

\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)

\(x=\frac{9+\sqrt{201}}{6}\)

các câu còn lại tương tự