\(\overline{abba}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

\(\overline{abba}=1000a+100b+10b+a=\left(1000+1\right)a+\left(100+10\right)b=1001a+110b\)

\(=11\left(91a+10b\right)⋮11\left(\text{đ}pcm\right)\)

23 tháng 11 2016

\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)

\(\overline{abcabc}=\left(100000+100\right)a+\left(10000+10\right)b+\left(1000+1\right)c\)

\(\overline{abcabc}=100100a+10010b+1001c\)

\(\overline{abcabc}=1001\left(100a+10b+c\right)\)

\(\Rightarrow\overline{abcabc}=143\left(100a+10b+c\right)⋮143\) (đpcm)

\(\Rightarrow\overline{abcabc}=13.7.11\left(100a+10b+c\right)⋮\begin{cases}11\\13\\7\end{cases}\)(đpcm)

 

23 tháng 11 2016

1)aaa=111a=37.3.a\(⋮37\)(đpcm)

2)aaa+bbb=111a+111b=111(a+b)\(⋮\)11(đpcm)

Dễ mà haha

29 tháng 11 2018

ab - ba ⋮ 9

ab - ba=a * 10+b*1-b*10-a*1

=a*(10-1)-b*(10-1)=a*9-b*9=9*(a-b)⋮9(vì 9⋮9)

vậy ab-ba⋮9

abba ⋮ 11

abba=a*1000+b*100+b*10+a.1=a*(1000+1)+b*(100+10)

=a*1001+b*110=a*11*91+b*10*11=11(a*91+b*10)⋮11(vì 11⋮11)

Vậy abba⋮11

29 tháng 11 2018

ab - ba ⋮ 9

ab - ba=a x 10+b x 1-b x 10-a x 1

=a x (10-1)-b x (10-1)=a x 9-b x 9=9x (a-b)⋮9(vì 9⋮9)vậy ab-ba⋮9abba ⋮11

abba=a x 1000+b x 100+b x 10+a.1= a x (1000+1)+b x (100+10)

=a x 1001+b x 110=a x 11 x 91+b x 10 x 11=11(a x 91+b x 10)⋮11(vì 11⋮11)Vậy abba⋮11

23 tháng 11 2016

tách ra xét Bội thôi

 

15 tháng 10 2017

\(\overline{aaabbb}=111000a+111b=37.3000a+37.3b=37\left(3000a+3b\right)\)

\(37\left(3000a+3b\right)\) \(⋮\) 37 nên \(\overline{aaabbb}\) \(⋮\) 37

\(\Rightarrow\) ĐPCM

31 tháng 12 2017

8338

18 tháng 3 2017

a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)

\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)

\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy \(\overline{abcdeg}⋮11\)

30 tháng 3 2017

b, Ta có: 72=8.9

\(\Rightarrow10^{28}+8⋮8;9\)

Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó

\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.

\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9

\(\Rightarrow10^{28}+8⋮9\) (1)

Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)​là 0, 0, 8 và tổng của 3 chữ số đó là 8.

Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)

Từ (1) và (2) suy ra \(10^{28}+8⋮72\)

18 tháng 6 2018

abcd=100.ab+cd =99ab+(ab+cd)

vì 99 chia hết cho 11=> 99ab chia hết cho 11 => nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11

18 tháng 6 2018

cảm ơn bạn cool queen, add với mình nhé <3