K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

Cái này là hệ quả của bất đẳng thức \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Bạn tính như nhân đa thức với đa thức là đc mà!

\(\left(a+b+c+d\right)\left(a^2+b^2+c^2+d^2-ab-bc-ac-ad-bd-cd\right)\\ =a^3+ab^2+ac^2+ad^2-a^2b-abc-a^2c-a^2d-abd-acd+a^2b+b^3+bc^2+bd^2-ab^2-b^2c-abc-abd-b^2d-bcd+a^2c+b^2c+c^3+cd^2-abc-bc^2-ac^2-acd-bcd-c^2d+a^2d+b^2d+c^2d+d^3-abd-bcd-acd-ad^2-bd^2-cd^2\\ =......\)

Phần cuối bạn tự tính nhé!

28 tháng 9 2016

2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)

Vậy bđt ban đầu được chứng minh.

13 tháng 4 2017

Ui đau đầu quá !

5 tháng 7 2017

cần gắp

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Bài 1)

Áp dụng BĐT Bunhiacopxki ta có:

\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)

Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)

\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)

Bài 2)

Ta thấy:

\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)

\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)

Dấu bằng xảy ra khi \(ac=bd=\pm 1\)\(cd=1\) ....

Bài 3)

Vế đầu:

\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)

Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)

BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.

Vế sau:

\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)

Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$

Dấu bằng xảy ra khi $a=b=c$

21 tháng 3 2017

\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)

\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)

\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)

\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)

\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

27 tháng 6 2019

Lời giải :

a) \(VP=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3=VT\)( đpcm )

b) \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)( đpcm )

a)CM \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

VT = \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

VP = \(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Ta thấy VP = VT

=> \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

b) CM \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

VT = \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

VP = \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=ac^2+2acbd+bd^2+ad^2-2abcd+bc^2=ac^2+ad^2+bd^2+bc^2\)Ta thấy VP = VT

=> \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)