K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

* Phân tích đa thức thành nhân tử: 1/ 25x2 - 10xy + y2 2/ 8x3 + 36x2y + 54xy2 + 27y3 3/ (a2 + b2 - 5)2 - 4 (ab + 2)2 4/ (a + b + c)3 - a3 - b3 - c3 5/ 2x3 + 3x2 + 2x + 3 6/ x3z + x2yz - x2z2 - xyz2 7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3 8/ x3 + 3x2y + 3xy2 + y + y3 9/ x2 - 6x + 8 10/ x2 - 8x + 12 11/ a2 (b - c) + b2 (c - a) + c2 (a - b) 12/ x3 - 7x - 6 13/ x4 + 4 14/ a4 + 64 15/ x5 + x + 1 16/ x5 + x - 1 17/ (x2 + x)2 - 2 (x2 + x) - 15 18/ (x + 2) (x + 3) (x + 5) -...
Đọc tiếp

* Phân tích đa thức thành nhân tử:

1/ 25x2 - 10xy + y2

2/ 8x3 + 36x2y + 54xy2 + 27y3

3/ (a2 + b2 - 5)2 - 4 (ab + 2)2

4/ (a + b + c)3 - a3 - b3 - c3

5/ 2x3 + 3x2 + 2x + 3

6/ x3z + x2yz - x2z2 - xyz2

7/ x3 + y (1 - 3x2) + x (3y2 - 1) - y3

8/ x3 + 3x2y + 3xy2 + y + y3

9/ x2 - 6x + 8

10/ x2 - 8x + 12

11/ a2 (b - c) + b2 (c - a) + c2 (a - b)

12/ x3 - 7x - 6

13/ x4 + 4

14/ a4 + 64

15/ x5 + x + 1

16/ x5 + x - 1

17/ (x2 + x)2 - 2 (x2 + x) - 15

18/ (x + 2) (x + 3) (x + 5) - 24

19/ (x2 + 8x + 7) (x2 + 8x + 15) + 15

20/ (x2 + 3x + 1) (x2 + 3x + 2) - 6

21/ x2 + 4xy + 3y2

22/ 2x2 - 5xy + 2y2

23/ x2 (y - z) + y2 (z - x) + z2 (x - y)

24/ 2x2 - 7xy + 3y2 + 5xz - 5yz + 2z2

25/ x2 - 7x + 10

26/ 4x2 - 3x - 1

27/ x2 - x - 12

28/ bc (b + c) + ac (c - a) - ab (a + b)

29/ x2y + xy2 + x2z + xz2 + y2z + yz2 + 2xyz

30/ (a - b)3 + (b - c)3 + (c - a)3

31/ ab (a - b) + bc (b - c) + ca (c - a)

32/ bc (b + c) + ca (c + a) + ba (a + b) + 2abc

Giúp mình với, giải chi tiết nha, nhiều bài mà mình đang cần gấp lắm!

3
18 tháng 9 2018

1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)

2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)

4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

5, \(2x^3+3x^2+2x+3\)

\(=x^2\left(2x+3\right)+2x+3\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

6, \(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xy^2\)

\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)

\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)

\(=xz\left(x+y\right)\left(x-z\right)\)

8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)

9, \(x^2-6x+8\)

\(=x^2-4x-2x+8\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

10, \(x^2-8x+12\)

\(=x^2-6x-2x+12\)

\(=x\left(x-6\right)-2\left(x-6\right)\)

\(=\left(x-2\right)\left(x-6\right)\)

Chỗ còn lại mai làm nốt nha.

19 tháng 9 2018

Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha

11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)

\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

12, \(x^3-7x-6\)

\(=x^3-3x^2+3x^2-9x+2x-6\)

\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+2\right)\)

\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)

13, \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

14, \(a^4+64\)

\(=a^4+16a^2+64-16a^2\)

\(=\left(a^2+8\right)^2-16a^2\)

\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)

15, \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)

16, \(x^5+x-1\)

\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)

17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)

19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)

Đặt \(x^2+8x+7=a\) ta có:

(*) \(\Leftrightarrow a\left(a+8\right)+15\)

\(\Leftrightarrow a^2+8a+15\)

\(\Leftrightarrow a^2+3a+5a+15\)

\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)

\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)

Đặt \(x^2+3x+1=a\) ta có:

(*) \(\Leftrightarrow a\left(a+1\right)-6\)

\(\Leftrightarrow a^2+a-6\)

\(\Leftrightarrow a^2+3a-2a-6\)

\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)

19 tháng 10 2017

Bài 1:

a) 25x2 - 10xy + y2 = (5x - y)2

b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)

c) 8x3 + 36x2y + 54xy2 + 27y3

= 8x3 + 27y3 + 36x2y + 54xy2

= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)

= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)

= (2x + 3y)(4x2 + 12xy + 9y2)

= (2x + 3y)(2x + 3y)2 = (2x + 3y)3

c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2

= (a2 + b2 - 5)2 - (2ab + 4)2

= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)

= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)

= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)

= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)

pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm

19 tháng 10 2017

Bài 2:

a) 2x3 + 3x2 + 2x + 3

= 2x3 + 2x + 3x2 + 3

= 2x(x2 + 1) + 3(x2 + 1)

= (x2 + 1)(2x + 3)

b)x3z + x2yz - x2z2 - xyz2

= xz(x2 + xy - xz - yz)

= \(xz\left [ x(x + y) - z(x + y) \right ]\)

= xz(x + y)(x - z)

c) x2y + xy2 - x - y

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

d) 8xy3 - 5xyz - 24y2 + 15z

= 8xy3 - 24y2 - 5xyz + 15z

= 8y2(xy - 3) - 5z(xy - 3)

= (xy - 3)(8y2 - 5z)

e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3

= x3 - y3 + y - 3x2y + 3xy2 - x

= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)

= (x - y)(x2 + xy + y2 - 3xy - 1)

= (x - y)(x2 - 2xy + y2 - 1)

= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)

= (x - y)(x - y - 1)(x - y + 1)

câu f tương tự

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

18 tháng 11 2022

Bài 2:

\(=\dfrac{x^2\left(x^2+4\right)-2x\left(x^2+4\right)}{x^2+4}=x^2-2x\)

Bài 1:

a: \(=\left(\dfrac{2}{3}:\dfrac{-1}{9}\right)\cdot x^4y^2z^6=-6x^4y^2z^6\)

b: \(=-12x^8-21x^5\)

c: =x^3+8

d: \(=125x^3-75x^2+15x-1\)

28 tháng 10 2022

a: \(=-2x^2y-\dfrac{5}{4}x^2y^2-\dfrac{4}{3}xy^4\)

b: \(=4x^{n-1+n+1}-6x^{n-1+1}=4x^{2n}-6x^n\)

 

16 tháng 12 2018

Câu 1:

a/ (-5x3)(2x2+3x-5)

=-10x5-15x4+25x3

b/(2x-1)x

=2x2-x

c/(x-y)(3x2+4xy)

=3x3+4x2y-3x2y-4xy2

=3x3 +x2y-4xy2

Câu 2:

a/ x3-2x2+x

=x(x2-2x+1)

=x(x-1)2

b/x2-x-12

=x2 +3x-4x-12

=(x2 +3x)+(-4x-12)

=x(x+3)-4(x+3)

=(x+3)(x-4)

c/ 2x-6

=2(x-3)

e/ x2+4x+4-y2

=(x2+4x+4)-y2

=(x+2)2-y2

=(x+2-y)(x+2+y)

d/ x2-2xy+y2-16

=(x2-2xy+y2)-16

=(x-y)2-16

=(x-y-4)(x-y+4)

Câu 3:

a: \(=\dfrac{5xy-4+3xy+4}{2x^2y^3}=\dfrac{8xy}{2x^2y^3}=\dfrac{4}{xy^2}\)

b: \(=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12y+36}{6y\left(y-6\right)}=\dfrac{y-6}{6y}\)

c: \(=\dfrac{3x+1-2x+3}{x+y}=\dfrac{x+4}{x+y}\)

d: \(=\dfrac{4x+7+5x+7}{9}=\dfrac{9x+14}{9}\)

e: \(=\dfrac{5\left(x+2\right)}{2\left(2x-1\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-5\left(x-2\right)}{2x-1}\)

29 tháng 12 2020

a) \(x\left(x^2+5x-3\right)=x^3+5x^2-3x\)

b) \(\left(2x+3\right)\left(x-1\right)=2x^2-2x+3x-3=2x^2-x-3\)

c) \(\left(8x^3y^2-6x^2y^3+2x^2y^2\right):2x^2y^2=4x-3y+1\)