\(2^{150}\) và \(3^{100}\).

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

\(2^{150}=\left(2^3\right)^{50}=8^{50}\)

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)

\(8^{50}< 9^{50}\)

Vậy \(2^{150}< 3^{100}\)

29 tháng 11 2017

Có : 2^150 = (2^3)^50 = 8^50

3^100 = (3^2)^50 = 9^50

Vì : 8^50 < 9^50 => 2^150 < 3^100

k mk nha

29 tháng 11 2017

\(\Rightarrow\)\(2^{150}=2^{3\cdot}^{50}=\left(2\cdot3\right)^{50}=6^{50}\)

\(\Rightarrow\)\(3^{100}=3^{2\cdot50}=\left(3\cdot2\right)^{50}=6^{50}\)

\(\Rightarrow6^{50}=6^{50}\)

Vậy \(2^{150}=3^{100}\)

Chắc vậy đó . Nếu đúng k nha

6 tháng 11 2017

Ta có:2\(^{150}\)=(2\(^3\))\(^{50}\)=8\(^{50}\)

         3\(^{100}\)=(3\(^2\))\(^{50}\)=9\(^{50}\)

Lại có 8\(^{50}\)<9\(^{50}\)\(\Rightarrow\)2\(^{150}\)<3\(^{100}\)

9 tháng 12 2016

có: \(^{2^{150}=\left(2^3\right)^{50}=8^{50}}\)

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)

Vì 8<9 nên \(8^{50}< 9^{50}\)

Vậy \(2^{150}< 3^{100}\)

9 tháng 12 2016

Ta có : 2150 = (23)50 = 850 (1)

            3100 = (32)50 = 950 (2)

Từ (1) và (2) => 850 < 950 vậy 2150 < 3100 

12 tháng 12 2015

ta có:2^10=1024>10^3=>2^100>10^30(1)

mặt khác,ta cũng có: 2^10=1024<1025=>2^100<1025^10

=> \(\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)

ta có:nếu 0<b<a=>ab+b<ab+a =>b(a+1)<a(b+1)=>a+1/b+1<a/b (*)

áp dụng (*) cho bài ta có\(\frac{41}{40}<\frac{40}{39}<\frac{39}{38}<..<\frac{32}{31}<\frac{31}{30}\)

=>\(\frac{2^{100}}{10^{30}}<\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\Rightarrow2^{100}<2.10^{30}\left(2\right)\)

từ (1) và (2)=>10^30<2^100<2.10^30 hay 2^100 có 31 chữ số(đpcm)

25 tháng 9 2016

\(2^{150}=2^{3.50}=\left(2^3\right)^{50}=8^{50}\)

\(3^{100}=3^{2.50}=\left(3^2\right)^{50}=9^{50}\)

\(8^{50}< 9^{50}nen2^{150}< 3^{100}\)

9 tháng 12 2016

a) Ta thấy số dưới lẫn số mũ của 536 lớn hơn 220 => 536>220

b)Ta có:\(99^{200}=99^{100}.99^{100}\)

\(9999^{100}=\left(99.101\right)^{100}=99^{100}.101^{100}\)

VÌ \(99^{100}.99^{100}< 99^{100}.101^{100}\)

Nên: \(99^{200}< 9999^{100}\)

c)Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)

Vì \(8^{50}< 9^{50}\)nên : \(2^{150}< 3^{100}\)

d)\(\sqrt{26+2}=\sqrt{28}=5< x< 6\)

\(\sqrt{26}+\sqrt{2}=5< x< 6+1< y< 2\)

=> \(\sqrt{26+2}< \sqrt{26}+\sqrt{2}\)

Câu d mình l

30 tháng 12 2015

2150=23.50= 850

3100=32.50=950

Do 850 <  950 nên 2150 < 3100

30 tháng 12 2015

\(2^{150}=2^{15\cdot10}=\left(2^{15}\right)^{10}=32768^{10}\)

\(3^{100}=3^{10\cdot10}=\left(3^{10}\right)^{10}=59049^{10}\)

Vì \(32768^{10}<59049^{10}\)

Nên \(2^{150}<3^{100}\)

12 tháng 12 2018

Câu 6 :

Vì bình phương một số luôn lớn hơn hoặc bằng 0

Mà tổng của chúng bằng 0

\(\Rightarrow2x+3=3x-2=0\)

\(\Leftrightarrow2x-3x=-2-3\)

\(\Leftrightarrow-x=-5\)

\(\Leftrightarrow x=5\left(\text{Thỏa mãn}\right)\)

Vậy có số hữu tỉ x thỏa mãn 

12 tháng 12 2018

\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left(3x-2\right)^2\ge0\end{cases}\Rightarrow\left(2x+3\right)^2+\left(3x-2\right)^2\ge0}\)

dấu = xảy ra khi: \(\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}}\)

=> ko có giá trị x nào t/m để \(\left(2x+3\right)^2+\left(3x-2\right)^2=0\)

p/s: Trần Thanh Phương sai rồi