\(\alpha\) \(\left(0^o<\alpha<90^o\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

Xét tam giác ABC vuông tại A có BC = a; AC = b; AB = c và góc B \(=\alpha\) .

Bạn tự vẽ hình nha. CM: Ta có: 

\(\frac{1}{\tan^2\alpha}+1=\frac{1}{\frac{b^2}{c^2}}+1=\frac{c^2}{b^2}+1=\frac{c^2+b^2}{b^2}=\frac{a^2}{b^2}\) (định lí Py-ta-go)

\(\frac{1}{\sin^2\alpha}=\frac{1}{\frac{b^2}{a^2}}=\frac{a^2}{b^2}\). Do đó:  \(\frac{1}{\sin^2\alpha}=\frac{1}{\tan^2\alpha}+1\)

 

9 tháng 1 2017

Câu 2 đề sai, phải là tìm \(max\) bạn nhé.

Đặt \(a=\sin x,b=\cos x\) thì \(P\left(x\right)=3a+\sqrt{3}b\) với \(a^2+b^2=1\)

(Tư tưởng Cauchy-Schwarz quá rõ)

Ta có \(\left(a^2+b^2\right)\left(9+3\right)\ge\left(3a+\sqrt{3}b\right)^2=P^2\left(x\right)\)

Suy ra \(P\left(x\right)\le2\sqrt{3}\). Đẳng thức xảy ra tại \(x=60\) độ.

Câu 1 để mình suy nghĩ sau.

18 tháng 1 2017

Đợi mình 2 tháng nữa làm cho

19 tháng 1 2017

\(\sqrt{\frac{1+\sin}{1-\sin}}-\sqrt{\frac{1-\sin}{1+\sin}}\)

\(=\sqrt{\frac{1-\sin^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{1-\sin^2}{\left(1+\sin\right)^2}}\)

\(=\sqrt{\frac{\cos^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{\cos^2}{\left(1+\sin\right)^2}}\)

\(=\frac{\cos}{1-\sin}-\frac{\cos}{1+\sin}=\cos.\left(\frac{1}{1-\sin}-\frac{1}{1+\sin}\right)\)

\(=\cos.\frac{2\sin}{1-\sin^2}=\frac{2\sin\cos}{\cos^2}=\frac{2\sin}{\cos}=2\tan\)

19 tháng 2 2016

oh , bác sĩ ơi tui sắp chết

 \(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có

a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)\(\frac{AC^2}{BC^2}\)\(\frac{BC^2}{BC^2}\)=1

b,\(\frac{\sin\alpha}{\cos\alpha}\)\(\frac{AB}{BC}\)\(\frac{AC}{BC}\)\(\frac{AB}{AC}\)\(\tan\alpha\)

#mã mã#

19 tháng 7 2015

( sin a + cos a )^2 = (7/5)^2 

=> sin^2 a + cos^2a + 2.sina . cos a =  49/25 

=> 1 + 2.sin a . cos a  = 49/25 

=> 2.sin a + cos a = 49/25 - 1 = 24 / 25 

 ( sin a - cos a )^2 = sin ^2 a + cos ^2a  - 2. sin  a . cos a = 1 - 24/25 = 1/25 

=> sin a - cos a = 1/5 (2)

TA có sina + cos a = 7/5 (1)

Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5 

=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5 

 

tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)

19 tháng 7 2015

a=A          

26 tháng 7 2017

Kết quả:

A=1    B=2   C=-4

3 tháng 10 2018

\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)

\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#