K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

a)\(x+\frac{25}{x+4}=x+4+\frac{25}{x+4}-4\ge2\sqrt{\left(x+4\right).\frac{25}{x+4}}-4\)(Cô-si)

                                                             \(=2.5-4=6\)

Vậy: GTNN là 6 \(\Leftrightarrow x+4=\frac{25}{x+4}\Leftrightarrow x=1\)(do x >-4)

b)\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)

        \(=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=2.5-6=4\)

Vậy: A min = 4 <=> x = 4

c) Áp dụng bdt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu "=" xảy ra \(\Leftrightarrow ab\ge0\)

Ta có: \(\left|x-3\right|+\left|x-5\right|=\left|3-x\right|+\left|x-5\right|\ge\left|3-x+x-5\right|=2\)

\("="\Leftrightarrow\left(3-x\right)\left(x-5\right)\ge0\Leftrightarrow3\le x\le5\)

13 tháng 6 2015

 

a) \(=x+4+\frac{25}{x+4}-4\). x>-4 => x+4>0. => 25/x+4 >0

áp dụng bđt cosi  cho 2 số dương ta có: \(x+4+\frac{25}{x+4}\ge2\sqrt{\left(x+4\right).\frac{25}{x+4}}=2\sqrt{25}=10\Rightarrow x+4+\frac{25}{x+4}-4\ge10-4=6\)

=> GTNN=6  <=> x=1

b) ĐK: x>=0, x khác 9

 \(A=\frac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

tương tự ở trên để c/m 2 số dương rồi áp dụng bđt cosi \(A\ge2\sqrt{5}-6=4\)=> Min =4 <=> x=4

nếu vẫn k làm đc thì liên hệ mình mình giải nốt cho nha.

c) gọi là B đi. B=|x-3|+|x-5|

ta sẽ có bảng xét dấu:

Nếu \(x\le3\) <=> B=-x+3-x+5=-2x+8

x=<3 <=>-2x>-6 <=> -2x+8>2 <=> B>=2

Nếu 3<x<5 => B=x+3-x+5=0x+15=15=> B=15

Nếu x>=5=> B=x+3+x+5=2x+8 

x>=5 <=> 2x>10 <=>2x+8>=18 <=> B>=18

=> Min B=2 <=> x=3

nhớ LI KE

17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

29 tháng 7 2019

\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

Vây...

\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)

Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:

\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)

NV
18 tháng 9 2019

ĐKXĐ: ...

\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\frac{25-x+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+5}-\frac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\frac{25-x+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}\right)\)

\(=\frac{-5}{\left(\sqrt{x}+5\right)}.\frac{\left(\sqrt{x}+5\right)}{-\left(\sqrt{x}+3\right)}=\frac{5}{\sqrt{x}+3}\)

b/ \(B=\frac{x+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

\(\Rightarrow B\ge2\sqrt{\frac{\left(\sqrt{x}+3\right).25}{\sqrt{x}+3}}-6=4\)

\(B_{min}=4\) khi \(\left(\sqrt{x}+3\right)^2=25\Rightarrow x=4\)

6 tháng 12 2019
https://i.imgur.com/uIbkS6G.jpg
NV
17 tháng 10 2019

Hình như biểu thức và các câu hỏi bên dưới ko liên quan gì đến nhau, bạn ghi nhầm đề bài này sang bài kia thì phải

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2