Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Tính giá trị biểu thức sau tại x+y+1=0
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)
Ta có: x + y + 1 = 0 => x + y = -1
(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)
\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)
\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)
\(=\left(y-x\right).\left(-1\right)-x+y+1\)
\(=-y+x-x+y+1\)
\(=1\)
2, Cho xyz=2 và x+y+z=0
Tính giá trị biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: x + y + z = 0
=> x + y = -z (1)
=> y + z = -x (2)
=> x + z = -y (3)
Từ (1);(2);(3)
=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0
a) 3x – 6 + x(x – 2) = 0
=> 3x - 6 + x2 - 2x = 0
=> ( 3x - 2x ) - 6 + x2 = 0
=> x - 6 + x2 = 0
=> x2 + x = 6
=> x( x + 1 ) = 2 . 3
=> x = 2
b) 2x(x – 3) – x(x – 6) – 3x = 0
=> 2x2 - 6x - x2 + 6x - 3x = 0
=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0
=> x2 - 3x = 0
=> x( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)
a) Vì x và y là hai địa lượng tỉ lệ nghịch
\(y=\frac{a}{x}=a=x.y\)
Thay \(a=2.4\)
Vậy \(a=8\)
b) \(x=\frac{a}{y}\)
c) Vì x là y là hai đại lượng tỉ lệ nghịch
\(x=\frac{a}{y}=x=\frac{a}{y}\)
Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)
\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)
a) \(A=\frac{6n-1}{3n+1}=\frac{2\left(3n+1\right)-3}{3n+1}=2-\frac{3}{3n+1}\)
Để A đạt GTNN thì \(\frac{3}{3n-1}\) phải đạt giá trị lớn nhất
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n-1}>0\\3n-1\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3n-1>0\\3n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n>\frac{1}{3}\\n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
Mà n thuộc Z => n = 1
\(\Rightarrow A_{min}=\frac{6.1-1}{3.1+1}=\frac{5}{4}\Leftrightarrow n=1\)
b) Điều kiện để A là phân số:
\(\hept{\begin{cases}6n-1\inℤ\\3n+1\inℤ\\3n+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}n\inℤ\\n\inℤ\\n\ne-\frac{1}{3}\end{cases}}}\)
Mà n thuộc Z => n luôn ≠ \(-\frac{1}{3}\)
Vậy để A là phân số thì n thuộc Z
c) A có giá trị nguyên <=> 6n - 1 chia hết cho 3n + 1
Có: 3n + 1 chia hết cho 3n + 1
=> 6n + 2 chia hết cho 3n + 1
=> 6n + 2 - (6n - 1) chia hết cho 3n + 1
=> 6n + 2 - 6n + 1 chia hết cho 3n + 1
=> 3 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(3) = {-3; -1; 1; 3}
=> 3n thuộc {-4; -2; 0; 2}
Mà n thuộc Z => 3n chia hết cho 3
=> 3n = 0
=> n = 0
Vậy để A thuộc Z thì n = 0
Vì \(\left|y-2\right|\ge0\forall y\)
\(\Rightarrow\left|y-2\right|-3\ge-3\forall y\)
Dấu "=" xảy ra <=> |y - 2| = 0 => y = 2
Vậy GTNN của \(\left|y-2\right|-3\) là - 3 tại y = 2
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2-19\ge-19\forall x\)
Dấu "=" xảy ra <=>\(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy ......................