\(A=3x+2+\left|5x\right|\) trong...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2023

a) Khi `x≥0`

`=> A=3x+2+5x`

`=> A=8x+2`

Khi `x<0`

`=> A=-3x+2-5x`

`=> A=-8x+2`

b) Khi `x≥0`

`=> B=-4x-2x+12`

`=> B=-6x+12`

Khi `x<0`

`=> B=4x+2x+12`

`=> B=6x+12`

 

2 tháng 2 2023

tiếc quá nhỉ

mất CTV òi :"(

22 tháng 4 2017

(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)

a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x

Vậy A = 3x + 2 + 5x = 8x + 2

- Khi x < 0 ta có 5x < 0 nên |5x| = -5x

Vậy A = 3x + 2 - 5x = -2x + 2

b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x - 2x + 12 = -6x + 12

- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x - 2x + 12 = 2x + 12

c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4

Vậy C = x - 4 - 2x + 12 = -x + 8

d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0

hoặc D = 3x + 2 - (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

hoặc D = 2x - 3 khi x < -5

22 tháng 4 2017

(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)

a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x

Vậy A = 3x + 2 + 5x = 8x + 2

- Khi x < 0 ta có 5x < 0 nên |5x| = -5x

Vậy A = 3x + 2 - 5x = -2x + 2

b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x - 2x + 12 = -6x + 12

- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x - 2x + 12 = 2x + 12

c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4

Vậy C = x - 4 - 2x + 12 = -x + 8

d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0

hoặc D = 3x + 2 - (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

hoặc D = 2x - 3 khi x < -5

30 tháng 5 2016

Hướng dẫn giải:

 a) A = 3x + 2 + |5x|

=> A = 3x + 2 + 5x khi x ≥ 0

     A = 3x + 2 - 5x khi x < 0

Vậy A = 8x + 2 khi x ≥ 0

      A = -2x + 2 khi x < 0

b) B = 4x - 2x + 12 khi x ≥ 0

    B = -4x -2x + 12 khi x < 0

Vậy B = 2x + 12 khi x ≥ 0

      B = -6x khi x < 0

c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên

C = x - 4 - 2x + 12 = -x + 8

Vậy với x > 5 thì C = -x + 8

d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0

    D = 3x + 2 - (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

      D = 2x - 3 khi x < -5

30 tháng 5 2016

Hướng dẫn giải:

 a) A = 3x + 2 + |5x|

=> A = 3x + 2 + 5x khi x ≥ 0

     A = 3x + 2 - 5x khi x < 0

Vậy A = 8x + 2 khi x ≥ 0

      A = -2x + 2 khi x < 0

b) B = 4x - 2x + 12 khi x ≥ 0

    B = -4x -2x + 12 khi x < 0

Vậy B = 2x + 12 khi x ≥ 0

      B = -6x khi x < 0

c) Với x > 5 => x - 4 > 1 hay x - 4 dương nên

C = x - 4 - 2x + 12 = -x + 8

Vậy với x > 5 thì C = -x + 8

d) D= 3x + 2 + x+ 5 khi x + 5 ≥ 0

    D = 3x + 2 - (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

      D = 2x - 3 khi x < -5

1 tháng 8 2017

a) Ta có : A = 3x + 2 + |5x|

+ x ≥ 0 thì A = 3x + 2 + 5x 

=> A = 8x + 2

+ x < 0 thì A = 3x + 2 - 5x

=> A = 2 - 2x 

14 tháng 8 2017

Ta có  : A=3x+2 + |5x|

\(x\ge0\) thì A = 3x+2+5x

=>A=8x+2

x<0 thì A=3x+2-5x

=>A=2-2x

30 tháng 5 2016

 a) A = 3x + 2 + |5x|

=> A = 3x + 2 + 5x khi x ≥ 0

     A = 3x + 2 - 5x khi x < 0

Vậy A = 8x + 2 khi x ≥ 0

      A = -2x + 2 khi x < 0

 

30 tháng 5 2016

b) B = 4x - 2x + 12 khi x ≥ 0

    B = -4x -2x + 12 khi x < 0

Vậy B = 2x + 12 khi x ≥ 0

      B = -6x khi x < 0

 

13 tháng 12 2019

\(DKXD:x\ne\pm2;x\ne3;x\ne\frac{3}{2};x\ne0\)

\(A=\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-3x}\right)\)

\(=\frac{\left(2+x\right)^2-4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2x^2-3x}{x^2-3x}\)

\(=\frac{4+4x+x^2-4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2x-3\right)}{x\left(x-3\right)}\)

\(=\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{2x-3}{x-3}\)

\(=\frac{4x\left(2x-3\right)}{\left(2+x\right)\left(x-3\right)}\)

b

Xét hơi bị nhiều TH nhá:(

Để \(A>0\) thì \(\frac{4x\left(2x-3\right)}{\left(2+x\right)\left(x-3\right)}>0\)

TH1:\(4x\left(2x-3\right)>0;\left(2+x\right)\left(x-3\right)>0\)

\(TH2:4x\left(2x-3\right)< 0;\left(2+x\right)\left(x-3\right)< 0\)

Bạn tự xét nốt nhá!

c

\(\left|x-7\right|=4\Rightarrow x-7=4;x-7=-4\)

\(\Rightarrow x=11;x=3\)

Thay vào .....

16 tháng 1 2021

a, ĐKXĐ : \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)hoặc \(2x^2-x^3\ne0\)hay \(x\ne\pm2;0\)

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(=\left(-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)

\(=\frac{-x^2-2x-1-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)

\(=\frac{-4x^2-6x+3}{\left(x-2\right)\left(x+2\right)}.\frac{-x\left(x-2\right)}{x-3}=\frac{\left(-4x^2-6x+3\right)\left(-x\right)}{\left(x+2\right)\left(x-3\right)}=\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}\)

16 tháng 1 2021

b, Ta có : A > 0 hay \(\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}>0\)

\(\Leftrightarrow x\left(4x^2+6x-3\right)>0\)

\(\Leftrightarrow4x^2+6x-3>0\) bạn xem lại bài mình có chỗ nào sai ko nhé !!! 

c, Ta có : \(\left|x-7\right|=4\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)

TH1 : Thay x = 11 vào phân thức trên : ... 

TH2 : Thay x = 3 vào phân thức trên : .... tự làm 

5 tháng 5 2018

- Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x - 2x + 12 = -6x + 12

- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x - 2x + 12 = 2x + 12