Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
1/
A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)
⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0
⇔ A = \(\dfrac{2}{x-2}\) = 0
⇒ x = 2 (loại) ⇒ pt vô nghiệm
a) ĐKXĐ : \(x\ne\pm3\)
b) \(A=\left(\dfrac{1}{x+3}-\dfrac{1}{3-x}\right):\left(2-\dfrac{6}{3-x}\right)\)
\(A=\dfrac{\left(\dfrac{3-x}{\left(x+3\right)\left(3-x\right)}-\dfrac{x+3}{\left(3-x\right)\left(x+3\right)}\right)}{\left(\dfrac{2\left(3-x\right)}{3-x}-\dfrac{6}{3-x}\right)}\)
\(A=\dfrac{\left(\dfrac{3-x-x-3}{\left(x+3\right)\left(3-x\right)}\right)}{\left(\dfrac{6-2x-6}{3-x}\right)}\)
\(A=\dfrac{\left(\dfrac{-2x}{\left(x+3\right)\left(3-x\right)}\right)}{\left(\dfrac{-2x}{3-x}\right)}\)
\(A=\dfrac{-2x}{\left(x+3\right)\left(3-x\right)}.\dfrac{3-x}{-2x}\)
\(A=\dfrac{\left(-2x\right).\left(3-x\right)}{\left(x+3\right)\left(3-x\right).\left(-2x\right)}\)
\(\Leftrightarrow A=\dfrac{1}{x+3}\)
c) Thay \(A=\dfrac{1}{6}\) ta có :
\(\dfrac{1}{x+3}=\dfrac{1}{6}\)
\(x+3=1:\dfrac{1}{6}\)
\(x+3=6\)
x=6-3
x=3
d) \(A=\dfrac{1}{x+3}\)
=> x+3 thuộc Ư(1)={-1,1}
=> x thuộc {-4,-2}
Bài 2:
Bài 1:
\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)
B3;a,ĐKXĐ:\(x\ne\pm4\)
A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)
a: ĐKXĐ: \(x\notin\left\{0;-4;-2;2\right\}\)
b: \(B=\dfrac{1}{x+2}-\dfrac{x^2-4}{x+4}\cdot\left(\dfrac{4x^2+x^2+4x+4}{4x^2\left(x+2\right)^2}\right)\)
\(=\dfrac{1}{x+2}-\dfrac{\left(x-2\right)}{x+4}\cdot\dfrac{5x^2+4x+4}{4x^2\left(x+2\right)}\)
\(=\dfrac{4x^3+16x^2-\left(x-2\right)\left(5x^2+4x+4\right)}{4x^2\left(x+4\right)\left(x+2\right)}\)
\(=\dfrac{4x^3+16x^2-5x^3-4x^2-4x+10x^2+8x+8}{4x^2\left(x+4\right)\left(x+2\right)}\)
\(=\dfrac{-x^3+22x^2+4x+8}{4x^2\left(x+4\right)\left(x+2\right)}\)
a: \(A=\left(\dfrac{x}{x^2-4}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{6}=\dfrac{-1}{x-2}\)
b: |x|=1/2 nên x=1/2 hoặc x=-1/2
Khi x=1/2 thì \(A=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{-1}{-\dfrac{3}{2}}=1\cdot\dfrac{2}{3}=\dfrac{2}{3}\)
Khi x=-1/2 thì \(A=\dfrac{-1}{-\dfrac{1}{2}-2}=1:\dfrac{5}{2}=\dfrac{2}{5}\)
c: Để A=2 thì x-2=-1/2
hay x=3/2
Bài 1:
Q = A.B = \(\dfrac{x-3}{x+1}\).\(\left(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\right)\)
= \(\dfrac{x-3}{x+1}\).\(\dfrac{x+3}{x-3}\)=\(\dfrac{x+3}{x+1}\)
= \(\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\)
Để biểu thức Q có giá trị là một số nguyên thì \(\dfrac{2}{x+1}\)nguyên
=> x+1 \(\in\) Ư(2)
Mà Ư(2) = { -1;1;2;-2}
Ta có bảng:
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Điều kiện xác định của biểu thức Q là x ≠ -1,3,-3
Vậy x ∈ { 0;-2;1;-3}
Bài 2:
\(P=\left(\dfrac{\left(2x-1\right)\left(x-3\right)+x\left(x+3\right)-3+10x}{\left(x-3\right)\left(x+3\right)}\right)\cdot\dfrac{x-3}{x+2}\)
\(=\dfrac{2x^2-7x+3+x^2+3x-3+10x}{x+3}\cdot\dfrac{1}{x+2}\)
\(=\dfrac{3x^2+6x}{x+3}\cdot\dfrac{1}{x+2}=\dfrac{3x}{x+3}\)
Để P nguyên dương thì \(\left\{{}\begin{matrix}3x+9-9⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3;9;-9\right\}\\\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{-4;-6;6;-12\right\}\)
Bài 1:
a) \(x\ne2\)
Bài 2:
a) \(x\ne0;x\ne5\)
b) \(\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
c) Để phân thức có giá trị nguyên thì \(\dfrac{x-5}{x}\) phải có giá trị nguyên.
=> \(x=-5\)
Bài 3:
a) \(\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right)\cdot\left(\dfrac{4x^2-4}{5}\right)\)
\(=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{2\left(2x^2-2\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x-1\right)\left(x+3\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\cdot2\left(x^2-1\right)}{5}\)
\(=\dfrac{\left(x+1\right)^2+6-\left(x^2+3x-x-3\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left[\left(x+1\right)^2+6-\left(x^2+2x-3\right)\right]\cdot\dfrac{2}{5}\)
\(=\left[\left(x+1\right)^2+6-x^2-2x+3\right]\cdot\dfrac{2}{5}\)
\(=\left[\left(x+1\right)^2+9-x^2-2x\right]\cdot\dfrac{2}{5}\)
\(=\dfrac{2\left(x+1\right)^2}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2\left(x^2+2x+1\right)}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+2}{5}+\dfrac{18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+2+18}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
\(=\dfrac{2x^2+4x+20}{5}-\dfrac{2}{5}x^2-\dfrac{4}{5}x\)
c) tự làm, đkxđ: \(x\ne1;x\ne-1\)
ô hô ngộ quá nhìu người bt toán lớp 8 trong khi lớp 7 với lại óc nguyow trở lại r kaka