K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

ta có : \(B=\left(1+tan^2x\right)\left(1-sin^2x\right)-\left(1+cot^2x\right)\left(1-cos^2x\right)\)

\(=\left(1+\dfrac{sin^2x}{cos^2x}\right)\left(sin^2x+cos^2x-sin^2x\right)-\left(1+\dfrac{cos^2x}{sin^2x}\right)\left(sin^2x+cos^2x-cos^2x\right)\)

\(=\dfrac{sin^2x+cos^2x}{cos^2x}\left(cos^2x\right)-\dfrac{sin^2x+cos^2x}{sin^2x}\left(sin^2x\right)\)

\(=\dfrac{1}{cos^2x}.cos^2x-\dfrac{1}{sin^2x}.\left(sin^2\right)x=1-1=0\)

nhớ ghi góc nha bn :) .

9 tháng 7 2016

(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)

=(cos 89 độ +... + cos 2 độ +cos 1 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)

=0

NV
8 tháng 7 2021

\(B=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)

\(=\dfrac{\left(sin^2a+cos^2a\right)}{cos^2a}.cos^2a-\left(\dfrac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)

\(=1-1=0\)

a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow x=30^o\)

b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)

\(\Leftrightarrow x=30^o\)

c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)

d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)

 

Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(

e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)

f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html

7 tháng 9 2019

\(C=\left(1+\tan^2\alpha\right).\cos^2\alpha+\left(1+\cot^2\alpha\right).\sin^2\alpha\)

\(=\cos^2\alpha+\cos^2\alpha.\tan^2\alpha+\sin^2\alpha+\sin^2\alpha.\cot^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)+\left(\sin^2\alpha+\cos^2\alpha\right)\)

\(=1+1=2\)

7 tháng 9 2019

Em dùng công thức sau 1+tan2x=\(\frac{1}{cos^2}\);\(1+cotg^2x=\frac{1}{sin^2x}\)với sin2x+cos2x=1

Đặt \(\left(sin^2\alpha;cos^2\alpha\right)=\left(a;b\right)\)=>1+a2=\(\frac{1}{b^2}\);\(1+b=\frac{1}{a^2}\);a2+b2=1

Suy ra C=\(\frac{1}{b^2}.\left(1-a^2\right)\)+\(\frac{1}{a^2}.\left(1-b^2\right)\)=\(\frac{1}{b^2}.b^2\)+\(\frac{1}{a^2}.a^2\)=2

Vậy C=2

8 tháng 8 2018

\(A=sin^210+sin^220+sin^230+sin^280+sin^270+sin^260=sin^210+sin^220+sin^230+cos^210+cos^220+cos^230=1+1+1=3\)\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)+\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)=\dfrac{1}{cos^2\alpha}.cos^2\alpha+\dfrac{1}{sin^2\alpha}.sin^2\alpha=1+1=2\)